

Optical & Rf Combined Link Experiment

19 November 2003

Advanced Technology Office

G. Duchak gduchak@darpa.mil 703-696-7495

I rarely end up where I was intending to go, but often end up somewhere that I needed to be.

Douglas Adams The Long Dark Tea–Time of the Soul

Where We've Been.....

THOR Phase 1 Summary

THOR Proposed Architecture & CONOPS

Problem: High bandwidth access to the GIG to/from the battlespace Solution: Mobile Free Space Optical

- Challenges
 - Variable channel characteristics (turbulence induced fading)
 - LOS limitations (cloud blocking concentrated at lower altitudes)
 - Bandwidth consistent with GIG, OC-48 (10X CDL)

Network Availability versus Number of Links

FSO General Availability

Four Operational Quadrants

- 1. Feasible operating area
- 2. Expensive operating area requires more nodes
- 3. Don't care [availability < 90%]
- 4. FSO falls apart

Power of Path Diversity

Path Diversity Needed to Route Around Blockages

- Concentrate Nodes at Lower Altitudes (< 8 km)
- Multiple Ports per Node to Achieve Route Diversity
 - Yields high network availability (under all but extreme cloud cover)
 - Reduces number of nodes (aircraft) needed

A Cumulative Solution Improvements in Latency QoS

[14 Hops, 2.5 Gbps, 50% Cloud Cover]

Networking to Route Around Blockages

Routing Diversity enables sustained data rate under cloudy conditions [14 hop scenario]

End-to-End Networking Results Summary

TCP Segment Delay

TCP Delay (95	i%)					
Max TCP Delay		Cloud Cover				
			0%	50%	80%	
		Aerostat 14 hops	N/A	4.3 ms	4.3 ms	
	atic		N/A	0.11 sec	0.69 sec	
	nrä		N/A	0.16 sec	0.81 sec	
	ıfig	Aerostat 9 hops	N/A	4.1 ms	8 ms	
	Con		N/A	0.1 sec	0.8 sec	
	vork (N/A	0.13 sec	1.05 sec	
		No Aerostat 10 hops	4.3 ms	6.6 ms	6.3 ms	
	etv		0.098 sec	0.14 sec	0.83 sec	
	Ž		0.108 sec	0.23 sec	1.31 sec	

THOR Phase 1 Architecture Summary

Cloud mitigation:

- Route diversity is an effective cloud mitigation strategy
- Use switching and self-correcting power of the network to get around clouds at PoPs
 - Airborne nodes clustered around PoPs for cloud mitigation [Combination of resources of opportunity and dedicated aircraft]
 - Link redundancy required: minimum 4 links per node
 - Smart flying improves performance and connectivity
- Diminishing returns above 80% cloud cover
- Use of aerostat is an option to reduce node count and get above worse atmosphere

Channel loss mitigation:

- High bandwidth tip/tilt correction, active tracking on both transmit and receive
- Use of towed bodies to mitigate FOR, boundary layer limitations

WDM for link isolation

Topology control assigns wavelengths

MRR implementation:

- Shuttered MRRs with IFF can be used to support link acquisition
- Potential for use on small platforms in store-and-forward configurations
- Secondary dissemination

THOR Phase 1 Terminal Summary

Terminal:

- Large link margins able to compensate for scintillations
- Develop multiple access receiver technology to reduce size and weight by sharing receive optical hardware
- Technologies to reduce SWaP
 - Develop non-mechanical beam steering to same or higher performance levels as mechanical

✓ Increase efficiency and reduce SWaP of support equipment for high-power lasers

- Increase STAB aperture so it can be used both on transmit and receive
- Mature volume hologram beam steering technology
 - Develop solutions for tracking with holographic beam steerer
 - Develop solutions for bit rate limitations of holograms
 - Leverage/mitigate chromatic dispersion to support WDM
 - ✓Increase aperture size supported
- Develop transmissive LC SLM technology with performance of reflective to reduce size
- Increasing FOR of non-gimbal beam steering
- Develop MRR technology
 - ✓ Higher data rates, larger aperture size, cat's eye

THOR Phase 1 Networking Summary

Network:

- Physical layer
 - ✓RF links as back-up
 - Forward error correction coding
 - ✓ 'Long' interleaver
- Link layer

Link layer retransmission as appropriate

Rate adaptation and RF links as backup

Network layer

Smart routing to quickly respond to cloud-induced outages

✓QoS-based service provisioning

Transport layer

✓ Alternatives to TCP (e.g., SCPS-TP, SCTP, XCP) that are more tolerant to RTT variance and appropriately respond to packet loss

- Topology control / Resource management: Further development is required
 - Discover potential neighbors
 - Coordinate link acquisition to maintain optimal network connectivity
 - Controls pointing, wavelength assignment

Where We're Going...

ORCLE

High Data Rate with High Availability for Communications On The Move

DIRO Direction

The central challenge is to enable optical communications bandwidth without giving up RF reliability and "all-weather" performance. Refocus efforts to *also* address achieving **high** <u>Availability</u>

- Ground to Air / Air to Ground (Surface ~10 km altitude)
 - Desired Availability: >95% under all conditions
 - Data Rate: >2 Gbps (average under all conditions)

ORCLE

The central challenge is to enable optical communications bandwidth without giving up RF reliability and "all-weather" performance.

- Challenges
 - Lowest 10 km of atmosphere
 - LOS limitations (cloud blocking concentrated at lower altitudes)
 - Variable channel characteristics (turbulence induced fading)
 - High Availability in all weather conditions
 - FSO performance strongly tied to channel characteristic
 - RF relative immune to most channel characteristics
 - High average data rate
 - FSO high but unreliable data rate
 - RF low data rate but reliable

Even short opportunities to "burst" very high FSO data rates leads to much higher average data rates compared to RF

ORCLE

The plan is to demonstrate three links & simulate network performance

ORCLE Considerations

- Networking Schema for QoS
 - RF for Latency sensitive assured delivery ("Dial tone")
 - FSO for bulk high bandwidth transfers that are less latency sensitive
 - Dynamic Allocatable Dual Physical Layer
- High Data rate Modulating Retro Reflectors
 - Greater than 45 Mbps
 - Wide FOV
 - Compact form factor
- Optical Channel Mitigation
 - Ultra short pulse lasers
 - Partially coherent beams
- Common/Combine FSO/RF Aperture
 - Enables transition to operational platforms as "replacement" rather than "in addition to" while maintaining current capabilities
 - Cohabitation of RF and FSO in same apertures long term goal

Hybrid Link FSO + RF Considerations

<u>Data Plane</u>

- Traffic Management
 - Control plane enables multiple data level priorities through intelligent allocation of bandwidth
 - Hardware must be consistent with traffic management rules
 - e.g. Interfaces, RF/optical switching, RF/optical redundancy
- System requirements for high priority data
 - Max data rate determined by RF network
 - Latency must be minimized

Control Plane

- Network control plane uses RF and optical channels to leverage the complementary powers of each domain
 - RF channel for neighbor discovery & acquisition
 - Sharing of GPS and INS data on aircraft position, velocity, and time
 - Optical channel for link quality probe
 - Uses a separate low rate optical tracking channel or data channel itself
 - Can also be used for operational control and signaling
 - The control plane integrates information from each domain, utilizing both to optimize network performance
 - Topology optimization and dissemination, physical provisioning, identification of back-up paths all flow from the control plane information
 - The control plane media is RF for out-of-band, inter-node control

ORCLE Acquisition Strategy

Contract Awards (up to 2) to <u>System Integrators</u> for Range Demonstration (~month 16-18) and Flight Demonstration (~month 28-30) of prototype system. Focus of the demonstrations will be to prove concepts for:

- Hybrid Networking
- High Data Rate Modulating Retro Reflector

Contract Awards (multiple) for innovative high risk and high payoff development and testing of concepts for:

- Common/Combine FSO/RF Aperture
- Optical Channel Mitigation
- Hybrid Routing Technology
- Compact Optical Beam Steering

The PRIMARY focus of ORCLE

The technologies that will facilitate and enable ORCLE to transition to the warfighter Notional Evaluation Criteria

- Technical Approach
- Operational Utility
- Concept of Operations
- Management Approach
- Potential Contribution and Relevance to DARPA Mission
- Cost Realism

Notional Schedule for ORCLE

Go / No Go Criteria and Conditions

Months After Contract Award	Event	Go /No Go Criteria	Conditions
18	Range Demo [White Sands Missile range]	 RANGE DEMO of HYBRID FSO/RF Link Mountain Top to Mountain Top as surrogate Air to Air (~50 km separation) Mountain Top to Ground as surrogate Air to Ground Link (~12 km separation) G-A, A-A Availability >95% Demonstrate >2.0 Gbps average data rate MRR data rate >45 Mbps at 12 km Model performance for conditions in South East Asia during July for a 10 node hybrid network over a 400 km area with 2 ground nodes (one fixed and one mobile) 	 Place terminals on motion tables to simulate C135 flight vibration environment and aircraft motion. Vary the optical opacity over time using screens (A-A and A-G tests) 40 hours simulated A-A test time 40 hours simulated A-G test time
30	Flight Demo [Gov't Range]	 FLIGHT DEMO – Ground to Air to Air of HYBRID FSO/RF Link G-A-A Availability >95% Demonstrate >2.0 Gbps <i>average</i> data rate Demonstrate Common / Combined FSO&RF Aperture FLIGHT DEMO – Mobile Ground to Air MRR data rate >45 Mbps at 20 km Model performance for conditions in South East Asia during July for a 20 node hybrid network over a 1000 km area with 2 ground nodes (one fixed and one mobile) 	 40 hours of flight testing per a/c (80 hrs total). Test Hybrid Link under a variety of environmental conditions (clear to cloudy).

Briefing Complete

RETROTORING RETROTORIS AND THE RETROTORIS AND A STATE OF THE RETROTORISM AND THE