ScienceDaily Logo
Text Size >  A  A  A  

Source:  
Date:  
2001-07-25
Print this page
Email to friend

Low Power, Highly Reliable, Wireless, Infrared Local Area Networks Demonstrated

University Park, Pa. --- Penn State engineers have shown that broadband, wireless, indoor, local area communication networks that rely on non-line-of-sight infrared (IR) signal transmission can offer low error rates as well as safe, low – below one Watt – power levels. Dr. Mohsen Kavehrad, professor of electrical engineering and holder of the W. L. Weiss (AMERITECH) chair, says, "Line-of-sight or point-to-point infrared signal transmission, which is used, for example, in television remote controls, is highly efficient at low power levels but suffers from the need for alignment between the transmitter and receiver. If someone ‘shadows' or blocks the remote control beam while you're trying to change the channel, the signal can't get through.

Related News Stories

Multi-rate Laser Pulses Could Boost Outdoor Optical Wireless Performance (October 26, 2004) -- Multi-rate, ultra-short laser pulses -- with wave forms shaped like dolphin chirps -- offer a new approach to help optical wireless signals penetrate clouds, fog and other adverse weather conditions, ... full story

University Of Michigan Researchers Reduce Interference From Microwave Ovens (December 4, 2003) -- Researchers at the University of Michigan College of Engineering have developed an elegantly simple technique that dramatically reduces the interference microwave ovens create in telephones and ... full story

Power Line Data Transmission Capacity: Bigger Than DSL Or Cable (January 6, 2005) -- Penn State engineers have developed a new model for high-speed broadband transmissions over U.S. overhead electric power lines and estimate that, at full data rate handling capacity, the lines can ... full story

Santa Cruz To Lead Ambitious Multidisciplinary Research Project On Wireless Communication Networks (April 12, 2005) -- Researchers at the University of California, Santa Cruz, are leading a major collaborative effort to develop the technology for complex wireless communication networks that can be set up in rapidly ... full story

Related sections:

"On the other hand, non-line-of-sight transmission, which uses a broad diffuse beam, suffers less from shadowing but usually forfeits the power efficiency, broadband and low error rate values that infrared transmission can offer." Now, however, Kavehrad and his colleagues at Penn State's Center for Information and Communications Technology Research have developed a new link design that uses a multi-beam transmitter with a narrow field of view receiver. The system has a bit-error rate of only one error per billion bits and uses milliwatt transmitted power levels. Kavehrad says, "This error rate is unmatched considering the offered transmission capacity." The Penn State researcher detailed the system Sunday, July 22, at the Fifth World Multi-Conference on Systemics, Cybernetics and Informatics SCI 2001 meeting in Orlando, Florida. His paper, "Some Recent Advances in Indoor Broadband Infrared Wireless Communications," is co-authored by Dr. Svetla Jivkova, research associate. To use the Penn State signaling scheme, for example, to form a local area network for a group of computers in a room, each machine is equipped with a low power infrared source and a holographic beam splitter. The original low power beam is separated into several narrow beams, which strike the ceiling and walls at points that form an invisible grid throughout the entire volume of the room. Because the beams are also reflected at each of the strike points, they can be used to send or receive information. Since the beams created by the splitter are narrow, narrow field-of-view receivers are used. Using a narrow field of view receiver makes it easier to filter out noise. In addition, receivers consisting of more than one element can insure continued coverage when some of the transmitter beams are blocked. Kavehrad notes, "Others have attempted to develop local area networks with radio frequencies. However, indoors, radio frequencies can pose a radiation hazard."

"Infrared signals, on the other hand, pose no such hazard, especially at the low powers used by our system. However, since the sun is an infrared emitter, as well as fluorescent and incandescent bulbs, light coming in through windows or from artificial lighting can add background noise to the system. This noise, to some extent, can be filtered at the receivers." The Penn State team developed a framework for computer simulation under which properties of room, transmitter and receiver are quantified. Using the simulation results, they showed that the system has a bit-error rate of only one error per billion bits in 99 percent of the coverage area at bit rates up to a few hundred megabits per second. In addition, the system uses transmitted power levels well below one Watt.

The wireless infrared communication system is being patented by the University. The research was supported by grants from the National Science Foundation and the Pennsylvania technology development program known as the Pittsburgh Digital Greenhouse.


This story has been adapted from a news release issued by Penn State.

 
Can't find it? Try searching ScienceDaily or the entire web with:
Google
  Web sciencedaily.com
 Search Our Archives
Find:
in:
from:
to
sort:
relevance date
 
 New Job Postings
Find:
City:
State:
View:
Post:

 

———————   Copyright © 1995-2005 ScienceDaily LLC   |   Contact: editor@sciencedaily.com   ———————