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On the Performance of  Combined Quadrature 
Amplitude  Modulation  and  Convolutional 

' Cod& for Cross-Coupled  Multidimensional 
Channels 

. Abstruct-The  performance of cross-coupled, Mary quadrature am- 
plitude modulation (QAM) systems  is determined when bandwidth 
efficient  trellis  codes  are  used  to combat interference.  Performance with 
and  without  compensation  for  cross-coupled interference is  presented.  It 
is  found that simple trellis codes can maintain the error probability at an 
acceptable level for  cross-coupling  parameters  that render uncoded 
systems  unusable. Up to  two-dimensional  trellis  codes are considered  for 
four-dimensional QAM signals, and possibilities of obtaining diversity 
advantages in the form of higher total  system throughput by prolonged 
availability  of the two signals are explored. This is  accomplished through 
joint  coding  over  two  different  constellations.  The  probability of the most 
likely error  events  is calculated by using the method of moments. The 
results are applicable  to any digital  communication  system  using multidi- 
mensional  quadrature  amplitude  modulation, e.g., voiceband modems, 
cross-polarized radio systems  and,  to some extent, optical  systems.  In the 
paper the analysis  is  restricted  to  nondispersive  cross-coupling  models. In 
most cases the coding  gain is larger than in the absence of cross-coupling 
interference.  Specifically, it is  found that simple  codes have coding  gains 
increased by at least 2 dB with cross-coupling  interference  relative to that 
obtained on the additive white Gaussian  noise channel. 

I. INTRODUCTION 

M ULTIDIMENSIONAL, modulat ion is becoming a 
popular technique for digital communication systems 

requiring high capacity. Examples exist in voiceband  modems 
[l] and in microwave radio systems where two polarizations 
are used to send independent, quadrature amplitude modulated 
(QAM) data 'signals [2]. In such systems the component 
signals for multidimensional modulation cannot be regarded as 
being uncoupled. In this paper it is shown that channel coding 
combined  with QAM (trellis coding), with or without compen- 
sation for cross-coupling type interference, is an effective 
means to reduce system performance degradation. 

The channel codes considered in the paFr  are basically the 
same as the bandwidth efficient trellis codes presented by 
Ungerboeck [3], who considered ,their performance for an 
additive, white Gaussian noise (AWGN) channel. Later 
Tharpar [4] presented results on the performance of trellis 
codes for, a number of signal impairments that occur in 
voiceband data transmission. Wei [5] has constructed trellis 
codes that are suitable for practical systems with differential 
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encodingldecoding. Trellis codes have been considered for 
multidimensional  modulation  by Calderbank and Sloane [6] 
and  Wilson  and Sleeper [7], among others. However, their 
performance studies were for  an AWGN channel. 

The objective of this paper is to determine the performance 
of trellis codes for multidimensional QAM signals in the 
presence of  AWGN  and cross-coupling between signal dimen- 
sions. Performance of coded systems is found with  and 
without a structure that compensates for signal cross-coupling. 
The cross-coupling is taken to be circularly symmetric and 
with deterministic coupling coefficients. In some cases the 
trellis codes utilized are designed to exploit the independence 
between dimensional cross-coupling as a form of diversity 
and, hence, realize a total system throughput gain through the 
prolonged availability of the signals. However, such diversity 
through coding turns out to be effective only for systems 
without signal cross-coupling compensation (for the compen- 
sator considered here). In any case, trellis codes are always 
found to exhibit excellent performance in interference chan- 
nels compared to an additive white Gaussian noise environ- 
ment. 

The method  of  moments [8] is used to numerically 
determine, with  high precision, the performance of trellis 
coded systems with cross-coupling interference. The pexform- 
ance of the coded systems is .evaluated by calculating the error 
event probability for the most likely error events. The error 
event probability can be determined without  having to be 
concerned about the accuracy of upper or lower bounds for the 
average error event probability. Finally, based on worst case 
interference considerations, the asymptotic performance for a 
high, value of signal-to-noise ratio (SNR) has also been 
calculated for the above systems and the results are in  good 
agreement with those obtained by  using the method  of 
moments. The asymptotic formulas are very simple, are easy 
to use, and are quite convenient for approximate cdding gain 
calculations at intermediate SNR  values found in practice. 

Following the Introduction, in Section I1 we describe the 
system model..System performance for the uncoded case, with 
and  without the interference compensator, .is presented in 
Section III. In Section IV performance analysis for the coded 
systems is presented, and a performance comparison is made 
with  and without the interference compensator. Numerical 
results are discussed in Section V. Finally, our conclusions are 
presented in Section VI. Formulas for the moments  used  in the 
paper are presented in the Appendix. 

II. SYSTEM MODEL 
The signal transmission model involves two orthogonal M- 

ary QAM signals with the same bandwidth  and center 
frequency. Such a signal set can be represented as 

Si(t)=Re {$ ( t )  exp ( juJ) } ,  i = l ,  2 (1) 
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where $e {: } denotes the real part of a complex number, j = 
6 1 ,  &(t) is the complex envelope of Si(t), and % is the 
carrier frequency in radians per second. The signal Si(t) is 

Si(t)= &fi(t-kT) i= 1, 2 
m 

(2) 
k=O 

where a7ik is the complex data symbol and &t) is the complex, 
low-pass equivdznt impulse response of the system. The 
components of S;(t) modulate the  in-phase  and quadrature 
carrier components (rails) of two cross-polarized QAM 
modulators. The components of S;(t) are denoted by ( S I R ,  SI,, 
S ~ R ,  S2,) since they represent the real and  imaginary parts of 
the complex envelope. Finally, for any k, a j k  = 8jk + j p j k  
where 8;k and p ; k  are from the set { f C,  2 3 C, * - * ,  (I, - 
1)C} with M = L2,  the number of signal points in the QAM 
signal constellation, and C is a constant (one)  throughout the 
paper. 

The received signal is r(t) = A&t) + n( t )  where A is a 2 
x 2 comple_x matrix which modlls the cross-coupling between 
th_e signals Sj(t), i = 1, 2 and S(t) is the complex, two-vector 
(S,(t), $(t)). Also, n(t) is a complex, Gaussian noise vector. 

We  shall  only consider the effect of the noise n(t)  and the 
matrix A on the system error probability. As  such it is 
convenient to write r(t) in vector-matrix form as 

R = D H + N  (3) 

where for a fixed time-sample 

R = [ r l R ,  r l f ,  r2R9 r211 (4) 

D = [ 6 l k ,   P l k ,   6 2 k ,   P 2 k l  ( 5 )  

N = [ n l R ,  rill, n 2 R 9   n 2 d .  (6) 
In (3)-(6), riR = Re {ri(t*)} and r ; ~  5 Im {ri(t*)} with i = 1, 
2, t* the sample time for detection, and Im {. } the imaginary 
part of a complex number. 

Let the H matrix in (3) be 

1 0 E2 cos 4 2  E2 sin 4 2  

H = [  41  COS 41 E 1  sin 1 41 - E2 1 sin 4 2  E Z  cos 0 4 2  (7) 
- 4 1  sin 41 E l  cos 41 0 1 1 

which is isomorphic to the complex matrix 

utilized in [2]. 
In (7), E 2  is the coupling coefficient from Sl( t )  to &(t) and 

+2 is a random variable that is uniform in [0, 2 ~ 1 .  Also, (E1, 
4,) represents the coupling from S2(t) to Sl( t ) .  Note  that  the 
form H in (7) excludes cross-rail interference between the real 
and  imaginary compqnents of each signal. The variations of  all 
the  coupling parameters are assumed to be very  slow  such that, 
over the short memory  of an optional interleaver introduced 
after the convolutional encoder, these parameters do not 
change. The interleaver is used to make sure that the coded 
interfering symbols are independent. This is the system that 
we analyze. In practice we believe that the interleaver is not 
necessary, and  that the performance of the system is close to 
the results of this paper. 

In the case when compensation for cross-coupling is not 
involved  in the receiver, system performance can be deter- 
mined from (4)-(7). When such compensation is used  we  must 
proceed as follows. 

block diagram is given  in Fig. 1.  As a compensa- 
-coupled interference, we shall use the “diagona- 

lizer” from [2]. This compensator removes the cross-coupling 
between tie two  QAM signals Sl( t )  and Sz(t). However, 
through its zero-forcing of the cross-coupled signal, it en- 
hances the noise  and introduces cross-rai! interference into 
each of  the  real  and imaginary components of the QAM 
signals. Our chief purpose is to analyze the performance of 
trellis coding  in  the presence of this residual interference, and 
also the cross-coupling interference when  no  compensation  is 
adopted. In practice the minimum mean-square error (MMSE) 
canceler from [2] would probably be a more suitable compen- 
sator as, for uncoded transmission, its performance is superior 
to the diagonalizer. Although the MMSE canceler can be 
analyzed, the notation is too cumbersome. 

To model the diagonalizer from [2] we form R W, with R as 
in (3), and  the purpose of W is to make HW become a matrix 
of the form 

and, as such, remove the complex signal cross-coupling. For 
H as in (7) it turns out that 

1 0 - E2 cos 4 2  - E2 sin 4 2  

w = [  -41  O cos 41 - 4 1  1 sin 41 
E2 sin 1 4 2  - E2 cos 0 4 2  

41 sm $1 - 4 1  cos 41 0 1 1 
(10) 

gives HW of the form in (9). The signal values for data 
detection (& = R W) are then 

R=DHW+NW (1 1) 

and system performance can readily be determined from (3)- 
(7) and, also, (10) and (1  1). We first consider the case for 
uncoded transmission. 

III. PERFORMANCE FOR THE UNCODED CASE 
A .  No Compensation 

For the case of  no interference compensation an4 no channel 
coding  of the data vector D in ( 5 ) ,  the system error probability 
follows from a consideration of (3). The estimate of 8 l k  in ( 5 )  
is given by the first component of R in (3): 

g l k = 6 1 k + [ 1  cos 4 1 6 2 k - 4 1  sin 4 l P 2 k + n l R  (12) 
where nlR is a sample of a zero-mean, Gaussian random 
process with variance d .  For ease of  notation  we drop the 
sampling  instant parameter in our noise samples, which are 
uncorrelated. Then, as the signal  points are separated by 2C 
units, 

P(e141, P2k9 6 2 k ) = P { I   Y + n l R I > C )  

where 

y=El cos 41 8 2 k - 6 1  sin 41 * P 2 k  (1 4) 

and Q(x) = ( 1 1 6 )  5; e-q2’2 dq. 
The result in (13) is the symbol error probability condi- 

tioned  on (dl, &kr  s Z k )  for a prescribe$ value of the cross- 
coupling coefficient, E l .  The unconditioned  symbol error 
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cos W g t  

Fig. 1. System model. 

+ n2. sin wot 

, 
probability is determined from the moments  of the random  gives the symbol error probability, conditioned on (4, P l r ) ,  as *. 

variable Y in (14). Now the signal-to-noise ratio for noncross- 
coupled M-ary QAM is 

- - .  . ~... 

P(eld9 O W ) = -  Q (”-”) ( 2 0 )  
2 ( L  - 1 )  

u 2 ( 1  + E 3 
where Eb is the energy per information bit, L is the number of 
signal points, and NO is the one-sided spectral height of 
additive white Gaussian noise. Thus, In terms of Eb/No we have 

“:=(I cos 4)Z * 
( 2 1 )  

where Y’ = Y/C,  the normalized value of Y in (14). Using where 2’ = Z / C  and 
the method  of  moments (see [8] or [9, Appendix C]), we have 

z=E1E2 [cos 4-blk sin dl. ( 2 3 )  

P (e )  = - 2 ( L -  7 w,Q ( d x -  ( 1  - t)> ( 1 7 )  
L ( L 2 -   1 )  

where ( w j ,  S ; )  are the weights and  nodes for the random 
variable Y‘ . The parameters (w,, s i )  are detemined from the 
moments of Y’ and these moments are derived in the 
Appendix. 

B. Compensator Analysis 
In presence of the compensator, the decision variable can be 

chosen from the first component of ,& in (1 1). Use of (7)-( 1 1) 
results in 

R^1 = 6 1 k -  51 E 2 6 l k .  cos d -k 4 1  E2Olk sin ’$ 

+ n l R + n d l  sin 41  REI cos 41 (18) 

where 4 = 4, + 4*. Use of the normalization 

We  note  that the normalization in (19) is easily accomplished 
in practice by using an automatic gain control (AGC) device. 
The moments  of 2 in (23) are derived in the Appendix. 

Iv. COMBINED MODULATION AND  CODING 

A .  Modulation/Coding Specification 
Ungerboeck demonstrated in [3] that  very efficient com- 

bined channel coding and  modulation schemes are obtained by 
combining convolutional codes with, e.g., multilevel ampli- 
tude modulation  (AM)  in one or two dimensions. He found 
that simple rate m/(m + 1) codes for signal sets with 2@+l) 
signal points performed quite well  when the mapping rule 
(i.e., the binary  word associated with each signal  point)  and 
the convolutional codes are selected following certain design 
vies. Typically only a few of the incoming m bits per signal 
point are actually coded. The “most significant” bits in the 
mapper word are not encoded. Thus, the actual encoder that 
needs to be found is a rate @ / ( m  + 1) where m is often 1 or 2;  
see 131-[5], [7]. The overall rate is m/(m + l), leaving m - 
m uncoded information bits. The receiver consists of a Viterbi 
detector that compares the received signal to all possible 
transmitted signals without interference. 
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Briefly, to get the error event probability with or without 
coding, let R be  the received signal vector, si and si, i j ;  j ,  be 
two competing signals, and consider si as transmitted. An 
error event occurs when 

where ((SI( is the squared Euclidean distance of s. Now 
assume R = si + N + I where N is the Gaussian  noise vector 
and I is the interference vector. Then an error event is  defined 
as 

with do = 11 As11 and As = si - si. Now the components  of 
vector N are all Gaussian and independent with zero-mean and 
variance ut. Hence, x, is zero-mean Gaussian with variance 
ut. Thus, the probability of an error event conditioned on the 
interference vector I is 

2 

do I . &  P (error event 11) = Q - - - ( 2an andu ) * (26) 

We now use  the previous results for evaluation of  the error 
event probability for various coding methods. The moment 
method [8], [9] is used to average the error event probability 
with  respect to the interference vector I in (26). Earlier [lo], 
[ 111 bounds were used to estimate the error probability, but 
the  moment  method is felt to be more precise. 

The Viterbi detection of trellis coded modulation is de- 
scribed in, for example, [12]-[15]. There are two types of 
error events that are particularly important for the  design  and 
analysis of trellis coded  modulation. The first type consists of 
parallel transitions. These are of length one channel symbol 
time and have errors only  among the uncoded  bits. The second 
type are typically longer and always have errors among the 
coded bits. The parallel transition error events occur for any 
transmitted signal point  and for any point in time, indepen- 
dently, from symbol to symbol. The optimum codes for the 
Gaussian  channel often have the property that the Euclidean 
distance  between signals corresponding to parallel transitions, 
d;, is larger than  the overall minimum Euclidean distance for 
the  combined coding and  modulation scheme. The minimum 
distance is then  given  by the second  type  of error event, 
namely, an error event corresponding to two different coded 
paths  among  the  coded  bits  of  the  mapper word. We  will 
denote the  minimum normalized squared Euclidean distance 
among  all  coded events as df.  By increasing the code memory 
(Le., the number of code states), df can be increased. By 
increasing m ,  the  minimum squared normalized  Euclidean 
distance between parallel transitions d2 can be increased. The 
overall minimum distance of the coded modulation scheme is 
dZ,, = min (d2, d:) .  

The above &stance considerations are all based  on  the 
assumption  that coherent transmission occurs on an  ideal 
additive white Gaussian channel. Below  we  will consider 
analysis in the presence of interference for the codes initially 
constructed for the ideal Gaussian channel. 

Figs. 2 and 3 show examples of  coded AM  and  QAM 
schemes considered in  this paper. In Fig. 2 the  modulation is 
eight-level AM  and the code is a rate 112 code on two of  the 3 
bits. In Fig. 3 the code memory  is u = 2 ,  the number of  coded 
bits is rii = 2 ,  and the modulation is 16-QAM. The mapper is 
the one given in [lS]. The performance analyses of other 
coded  QAM  and  AM schemes are given  in  [15]. 

Although  the parallel transition dominates the distance for 
the  memory u = 2 code in Fig. 3, the next  minimum distance 
affects the error probability for low  and intermediate signal-to- 
noise ratios for the Gaussian channel (without interference). 

(a) 

b2  PARALLEL TRANSITION 

b3 \ b l  
\ I .- 

110 1i1 101 100 010 O i l  001 000 
0 - - - : -- 

- 7  - 5  -3 -1 I 3 5 7 

- - - 

(b) 
Fig. 2. (a)  Rate 2/3 encoder with 1 bit  uncoded. (b) Symbol  mapping by set 

partitioning, 8-AM. 
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Fig. 3. Example of mapper  and u = 2 coder  where a  rate 1/2 code is  used 
and  where  the  parallel transitions  corresponding to the uncoded  bits 
dominate  the  minimum distance. The overall  rate of the  coded 16-QAM 
system is 314. 

As  we  will see below, it  will be even more important to study 
error events of different lengths and distances for the 
interference case. For the case of coding on two rails, the 
difference signal vector is defined as As = (al,  bl,  ai, bz, a3, 
b3, * a ,  ak, bk, * - * ) where ak and bk are the components  of 
As in the in-phase and quadrature rails at time k, respectively. 

For the memory u = 2 code in Fig. 3, the next  minimum 
distance event has the squared normalized distance of 20. This 
corresponds to the difference signal vector As = ( 2 ,  2, 0, 2, 
2,  2 )  while the minimum squared distance is 16, given, e.g., 
by As = (4, 0) or As = (0, 4) parallel transitions. 

B. Performance Analysis: No Compensation 
From. the channel model it now follows that  the decision 

variables for the received symbols corresponding to S l ~  and 
SI1  rails are 

Is - 

~ l k = ~ l k + t 1 8 2 k  cos c b l - t I b 2 k  sin ( 6 1 + n l R  (27) 
I k -  @lk+ sin ( 6 1  + cos 41 + ~ I I  
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TABLE I 
THE  EFFECT  OF WORST  CASE  INTERFERENCE FOR Two-RAIL CODING 

WITHOUT  INTERFERENCE  COMPENSATION  WHERE  THE  CODING IS 

THE  EFFECT OF WORST  CASE  INTERFERENCE FOR TWO-RAIL 
CODING  WITHOUT  INTERFERENCE  COMPENSATION WHERE 

THE  CODING IS PERFORMED ON RAILS IN DIFFERENT 

DONE IN THE  SAME QAM CONSTELLATION, SIR, SI,, (X,&x) AND 

QAM CONSTELLATIONS, SIR, Szr ,  (A,,, B-) 

* Alternatively 1 . 8 d  = 2.55 depending on mapping, since the error 
event is slightly unsymmetric with respect to the in-phase and quadrature 
components. 

for each signal point 8Lk, @lk at time k. Using the technique 
described earlier, we have the conditional error event proba- 
bility 

where 

where the summation over the k’s is taken over the compo- 
nents  of the difference vector, ak, b k  corresponding to the 
error event; and r, is the overall rate of the coded system. 
Thus, the error event probability is conditioned on interfer- 
ence components corresponding to all components of the error 
event. The average error event probability is obtained by 
averaging (28) over 41 and {82k, &} assuming a uniform 
distribution of  and independent interfering symbols { 82k, 
&} with a uniform distribution. 

It is immediately clear from (29) that there is a worst case 
combination of phase (61 and interfering data symbols {82k, 
&k}. This worst case parameter combination will dominate 
the average error event probability for high signal-to-noise 
ratio values. By determining this worst case we  will establish 
guidelines and  bounds for the error probability behavior of the 
uncoded  and the coded schemes. The worst case of the error 
event probability in (28) can be expressed as 

P (error event 1 worst case parameter combination) 

where 

-sin 41 (akP2k-bkBZk) (31 )  
k 1 

It is reasonably straightforward to derive Table I for some of 
the cases which are of interest to us, namely  uncoded 16- 
QAM, uncoded 8-AMPM used in [3], and coded 16-QAM. 
From the data in Table I the relative asymptotic error 
probability behavior of each error event can be calculated. For 
E l  XAax < 1 ,  the degradation in channel signal-to-noise ratio in 
decibels relative to the case of  no interference is 10 loglo (1 - 
t1 Xhax)2 dB, and the relative degradation compared to the 
minimum distance error event for the case of no interference is 

From Table I we can also derive the value of for which there 
is a “floor” on the error probability curve. This happens when 

I is large enough to yield a worst case interference vector that 
brings the decision variables on the “wrong” side of the 
decision boundary, i.e., t1Xka, > 1 .  Thus, for this parameter 
combination an erroneous decision will be made  even for 
infinitely high &/No values. For uncoded 16-OAM, a floor 
will start appearing for E l  > 1/3fi. The corresponding 
values  of E l  can easily be calculated for the other schemes. 

C. Diversity: No Compensation 
We will  now analyze the error event probability for coded 

QAM where the transmission of the coded in-phase component 
is done over one QAM constellation and the transmission of 
the  coded quadrature component is done over the other QAM 
constellation. The decision variables in this case are 
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Equation (33) should be compared with (27), which  was for no 
diversity, In the previous section the average error event 
probability was calculated by  first calculating the error event 
probability conditioned on the interference. In the present case 
there is one more complication, that is, the interference vector 
is now a function of the transmitted signal. 

Proceeding as in our earlier analysis, 

Note  that 6 1 k ,  &k are now  the transmitted sequence  and 8 2 k ,  
f i1k  are the interfering symbols. .The average of (34) is 
calculated  with  the  method  of  moments for a given data 
sequence, in particular the worst case sequence, as will  be 
seen in the  numerical results section. 

The worst case of (35) has been calculated for some 
interesting scenarios using the same method as before. The 
worst case of X < 1 is now calculated for the worst 
interference parameters and  the  worst transmitted sequence. In 
particular, we  will consider the  two limiting cases of E l  = Ez 
(same interference) and ,$2 = 0 (only  coupling  in one 
direction). For the two cases, for = E 2 ,  we have X,, = 
ElA,,, = &Amax, and for the case where (2  = 0 we  have X,,, 
= E l  B,,,. Thus, we  obtain the results shown in Table I. Study 
of  the results in Table I shows that the worst case with. E l  = t2 
is  worse  than X;,, (A- is larger). On the other hand, for the 
schemes  with error events having components on  both rails, 
BmaX is smaller than  both A,, and X;,,. Thus, for all error 
events we have A,,, 2 X;,  and B,,, 5 X;,. 

D.  Performance  Analysis: With Compensation 
We  now consider combined QAM and convolutional coding 

on channels with compensated interference. Using the channel 
model  with compensation, we obtain the decision variables 

EIE2  sin 9 1 
g l k = 6 l k +  

I - E I E Z  cos 9 I - E I E Z  cos d P l k +  

( n l R - n 2 R E 1  cos dl +nZlEl sin dl) (36) 

( ~ I I - ~ Z R E I  sin $1 - n 2 , E 1  cos 4]) (37) 

where k denotes the successive signal points in the QAM 
constellation. Again, using similar arguments as before, we 
obtain 

P (error event 141, 4 2 7   { & k t   P I k l )  

with 

where 4 = + 4 2 .  With the method of moments, the 
average of (39) over 4 is calculated conditioned on any 
transmitted  sequence  and  in particular for the worst case 
sequences. 

The  worst  case error probability for X,, < 1 is given by 
X,,, = E1(2Xhax where X;,, is minimized over 4 for the 
worst  case ( & k ,  Plk) for any given error event. The asymptotic 
‘degradation for any error event with distance di  due to 
interference is 10 loglo ((1 - 4‘1E2X,&)z/(l + ( t ) )  dB, and 
the  asymptotic degradation due to interference, compared to 
the performance with  no interference, is 10 loglo (di(1 - 
E1(2X~,)2/d$n(1 + 6:)) dB. Straightforward maximizations 
yield the worst case results in Table 11. From this table we can, 
for example, see  that the error probability “floor” occurs for 
the same value of the product E l &  for uncoded 16-QAM, 8- 
AMPM, and the next  minimum distance error event for the 
memory v = 2 coded 16-QAM scheme. 

It  is clear from the error event formulas that for any  given 
error event, a sufficiently large interference level  will  make 
X,,, > 1 and, consequently, cause a floor in the error 
probability. Thus, errors can occur even if there is  no 
Gaussian noise. By examining the expressions for the error 
probability, we can conclude that there is a worst case type  of 
error event which  will  maximize Xmx and, thus, will  be the 
first error event that  will  have a worst case error probability 
which  is irreducible for high signal-to-noise ratios. However, 
even for very  long error events there are maximum  values of 
E l  and E2 for which the error probability does not have a floor. 
We will now identify these worst case error events for the 
cases considered above. 

In general, no  coded error event (even  infinitely long) will 
have X;,  larger than the uncoded X:,, for the same signal set. 
For example, for coded 16-QAM, assume a hypothetical error 
event which  is  of length 2K where the As is (2, 0, 2, 0,  2, 0, 

3 a i n  Table I and X;,, = in Table 11. These values are 
independent  of K. It is apparent that the above hypothetical 
error event of length 2K is the one that  maximizes Xiax. Thus, 
an upper  bound on E l  and E 2  can  be established below  which 
none  of the error event probabilities will  have a floor. 

E. Diversity: With Compensation 
Coding after interference compensation  can also be ana- 

lyzed  when  two different QAM signal constellations are used. 
In this case the conditional error probability is 

... , 2 ,  0). Straightforward calculations show  that X;,  = 

P (error e v e n t l h  427 { b ,   PI^)) 

(40) 
with 

In this case the average of P in (40) over 41, 42, & k ,  f i l k  can 
be calculated by the method  of  moments. The worst case 
behavior  of (41) is given by the X;,, values, which are the 
same as those in Table 11. The relative asymptotic degradation 
compared to interference-free transmission for an error event 
with distance di. is  now 



1196 IEEE  TRANSACTIONS  ON  COMMUNICATIONS,  VOL.  COM-34,  NO. 12, DECEMBER 1986 

TABLE Ii 
THE EFFECT OF WORST  CASE  INTERFERENCE FOR TWO-RAIL CODING 

WITH  INTERFERENCE  COMPENSATION WHERE THE CODING IS 
PERFORMED ON RAILS  IN THE  SAME Q A M  CONSTELLATION 

SCHEME 

UNCODED 16-QAM (2.0) 

UNCODED 8-AMPM (2.2) f i  = 3.16 

CODED 16-QAM ' I (4,O) 1 16 1 
2 '  

TABLE 111 
THE EFFECT OF WORST-CASE  INTERFERENCE ON CODING  GAIN FOR 

ONE-RAIL CODING WITHOUT (r;,) AND WITH INTERFERENCE 
COMPENSATION (ZAar) 

SCHEME yzax d:, ERROR EVENT 

UNCODED 4-AM 3-f-5 = 4.24 = 3.16 4 2 

By comparing (40)  and (41) to (38)  and (39), we  note  that  they 
coincide for the case t1 = t2. Furthermore, for t2 < l1 there 
is a small advantage to be gained, as can be seen from (42). 
However, for desired parameter combinations this advantage 
is  only a small fraction of a decibel. 

F. Other Signal Sets 
It is straightforward to modify the above technique to coded 

AM. Table 111 shows the equivalent of Tables I and I1 for 
coded 8-AM and  uncoded 4-AM with compensation (Y-) 
and  without compensation (2-). In the numerical result 
section  we  will discuss the performance of the code'in Fig. 2. 
The diversity concept considered herein is not applicable to 
one-dimensional AM. 

V. NUMERICAL RESULTS 
We have calculated the error event probability for the 

shortest dominating error events for the combined convolu- 
. tional codes and multilevel AM  and  QAM schemes described 

earlier. For comparison, the performance of 4-AM, IdQAM, 
and 8-AMPM without coding have also been evaluated. All 
schemes are considered with  and without interference compen- 
sation. 

A; No Interference Compensation 
Fig. 4 shows the average symbol error probability for 

uncoded  16-QAM without coding and interference compensa- 
tion. The interference coupling parameter E l  is varied, and on 

' the curves, 10 loglo ( E : )  is displayed in decibels. The behavior 
of these curves is  well  matched to the results for the worst case 

dB 

Fig. 4. Average  symbol error probability  versus Eb/No for uncoded 16- 
QAM. No interference compensation is used.  The  coupling parameter E 1  is 
shown  in  decibels (10 loglo E : ) .  

8 IO 1 2  14 16 18 2 0   2 2  24 
dB 

Fig. 5 .  Average error event  probability for 8-AMPM for the S I R ,  SI, case 
for  different values of E ,  (solid curves) and  worst  case error event 
probability for the S I R ,  S2, case  with .$I = and for some  values  of 5 1  
when t 2  = 0. 

analysis presented in Table I. Uncoded 8-AMPM without 
interference compensation has also been analyzed. The results 
are shown in Fig. 5 and should be compared to the data in 
Table I. By comparing the average error probability curves in 
Fig. 4 and 5 ,  we observe that 8-AMPM suppresses interfer- 
ence more effectively than 16-QAM. This is also consistent 
with the worst case comparisons in Table I. Fig. 5 also shows 
the result when 8-AMPM signals are transmitted by means of 
the in-phase rail over one constellation using  channel 1 and the 
quadrature component over the other constellation using 
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Fig.  6. Average error event  probability  for  the  minimum and  next  minimum 
distance error event for u = 2, rate 2/3 coded  8-AM  without interference 
compensation. For  comparison, 4-AM  with interference is  shown  in Fig. 4. 

channel 2. In this case we  have  only analyzed the average error 
event probability for the worst transmitted sequence for the 
two  limiting cases with E l  = E 2  and  with E2 = 0. These cases 
are referred to  as ( S l ~ ,  & I )  worst case in Fig. 5. Note  that 
the worst case with tz = 0 is  much better than  the average 
error event probability for the case when  both  the in-phase and 
the quadrature components are transmitted in  the same 
constellation over the same channel. On the other hand, the 
two-channel case with E l  = E2 exhibits results worse than  the 
average error event probability when both the in-phase and 
quadrature rails of one signal are transmitted over the same 
channel. This was to be expected from the results in Table I. 

Coding on one rail  with eight-level AM and a rate 1/2, 
memory u = 2 on two of the 3 bits yields  the error event 
probabilities shown in Fig. 6. Comparison of these results to 
uncoded 4-AM, shown in Fig. 4, seems to indicate that  the 
coding gain obtained for the interference-free channel is 
maintained for low interference levels; however, it is not 
increased. Compare these results to the worst case results in 
Table 111. The average error event probabilities in Fig. 6 and 
the results in Table 111 are quite consistent. 

Results for the coded 16-QAM scheme are shown  in Fig. 7. 
Error event probabilities for the minimum distance parallel 
transition (d;  = 16) and the next  minimum distance (long) 
error event are shown. The coding gain compared to uncoded 
16-QAM and also to the uncoded 8-AMPM now seems to be 
increased for ‘‘reasonable’ ’ intermediate interference levels 
compared to the gain for no interference. Notice the difference 
between the one-rail code in Fig. 6 and the coded 16-QAM 
scheme in Fig. 7. Also compare the results in Fig. 7 to the data 
in Table I. Note  that the minimum distance error event 
dominates the other error events for low values of the error 
probability  and E , .  However, for E l  at - 15 dB, the error event 
probability for the next  minimum distance error event be- 
comes larger than  that for the minimum distance (parallel 
transition) error event. This trend is even more apparent for 
- 10 dB interference level. These results are in  good 
agreement with the results in -Table I. 

Fig. 8 indicates the  potential  diversity  properties of 
transmitting coded 16-QAM over in-phase and quadrature 

I I I I I I  
6 8 10 12 14 16 18 20 22 

dB 

Fig. 7.  Average error event  probability for the  minimum  and  the  next 
minimum  distance error event for the u = 2, rate 3/4 coded  16-QAM 
without interference compensation.  The  two  coded  QAM  rails are 
transmitted over the  same channel, S I R ,  SI,. 

Y =2. RATE 3/4 CODED 16 OAl 
NO COMPENSATION 
2.2,0,2,2,2 ERROR EVENT 

t \  

dB 

Fig. 8. Worst case error event  probability for the  next  minimum  distance 
error event for the S I R ,  S,, case both for E l  = at - 15 dB  and for €2 = 0, 
E l  at - 15 dB. Compare  the average  error event  probability for the SIR, SI, 
case  with E l  at - 15 dB. 

average error event probability for the worst transmitted 
sequence, denoted ( S I R ,  S2f) worst case in the figure for the 
two  limiting cases of E l  = E2 and Ez = 0 for proper parameter 
combinations. Fig. 8 is representative of these results. For the 
particular error event shown, we  can see that the worst case E2 
= 0 is significantly better, than the average error event 
probability for the case where the coded in-phase and 
quadrature rails are transmitted over the same constellation. 
On the other hand, the worst case error event probability for 
the $I = $, case and different OAM constellations is 

rails in  two different constellations. We have  analyzed the significantly worse. These trends seem to match those 
_ -  -- 
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Fig. 9. Average  symbol error probability of uncoded  16-QAM. Interference 
compensator is used. 

indicated in Table 1. Whether any overall gain in system 
performance is achieved by sending the coded Z and Q rails 
over different QAM constellations depends on the distribution 
of El and E 2 .  It is, however, clear from Table I that  with E l  = 
&, there is no gain by coding over two constellations. On the 
contrary, Table I clearly indicates that it is better to use  only 
one constellation. When one of E l  or Ez is small, we obtain 
diversity gains compared to the worst of the QAM channels. 
This  could  be exploited, for example, in dual-polarized 
microwave radio channels. If the polarized signals are 
subject to .independent fades and,  as a result, independent 
cross-coupling factors, joint coding can provide diversity and, 
as a result, a larger overall system throughput. 

B. With Interference Compensation 
Figs. 9 and 10 show the performance of  uncoded 16-QAM 

and 8-AMPM, respectively, when the diagonalizer considered 
in (10) is utilized. Fig. 9 shows the average symbol error 
probability for 16-QAM. and Fig. 10 shows the worst case 
symbol error event probability for 8-AMPM calculated for the 
case of one constellation and for the case of E l  = E2.  The 
average is slightly better and the relative difference between 
the curves for 8-AMPM is very similar to that for 16-QAM. 
This is consistent with Table 11. Notice the difference 
compared to Figs. 4 and 5 ,  which are for the case of no 
compensation. It is clear that compensation is effective. 

Fig. 11 shows the average error event probability for coded 
%AM, memory u = 2 coding on one rail and  with an 
interference compensator. Comparing this figure to uncoded 
4-AM (16-QAM, Fig. 9), we  can see that there seems to be 
some interference suppression with this code, but' not very 
much. Fig. 11 also shows some worst case error event 
probability values where in the derivation we have chosen the 
worst case interfering symbol sequence { P l k }  and have 
averaged over +. Note  that the worst case curves are about 2 
dB worse than the average results. Also, note  that the worst 
case results in Table 111 are slightly greater because they 
include the worst value of 4. ' 

Fig. 12 shows the coded IdQAM, memory v = 2 coding 
case with an interference compensator. The average error 
event probability is calculated by the method  of  moments for 
the parallel transition minimum distance error event and the 

8 10 12 14 -16 18 20 22  24 
dB 

Fig. 10. Worst case  error  event probablllty for uncoded 8-AklPM  for 
transmission of both rails over one  channel ( S I R ,  SI,). Interference 
compensation is used. 

1 1 1 ~ 1 ~ 1 1 1 ~ 1 1 1 1 1 1 1  

AVERAGE ERROR PROBABILITY 

CODED. OAM 
V=Z,RATE 2/3 

1 I I I 1  I I I I I I ,  1 ,Fb!No, 
8 IO 12 14 16  I8 20 22 2. 

dB 

Fig. 11. Average  error event  probability for rate 2/3, u = 2 coded  8-AM 
with interference Compensation. For comparison  we  have also shown  some 
worst  case  values. 

next  minimum distance error event. Some error event proba- 
bilities based on the worst transmitted sequence (denoted S I R ,  
SI, worst case on the figure) are also shown for comparison. 
After comparison to the uncoded 16-QAM in Fig. 9 and 8- 
AMPM in Fig. 10 and to Table 11, we can conclude that this 
code has some interference suppression capability, i.e., the 
coding gain without interference is smaller than the coding 
gain with limited interference, for instance, for E at - 10 dB 
and an error event probability of lo-*,  an additional 2 dB 
coding gain is achieved relative to the case where = 0. This 
is also the case for the same coded 16-QAM scheme with no 
interference compensation, as was discussed earlier (see Figs. 
5 ,  7, and 8) 
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~~ 

CODED 16 PAM 
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8 IO 1 2 ~  14 16 18 20 22 2 4  

dB 

Fig. 12. Average  and worst  case  error  event  probabilities  for rate 3/4, IJ = 2 
coded 16-QAM. Interference compensation is used.  The S,R, S,, cases are 
calculated for f ,  = &. 

Finally, we  show some error event probability results for 
the coded  16-QAM case with the diagonal As = (4,  4) 
parallel transition, that is,  for example, signal point (0, 0, 0 , O )  
versus ( I ,  1 ,  0, 0) in Fig. 3. The results referred to as worst 
case error event probability in Fig. 13 are average error 
probability for the worst transmitted sequence. These results 
display similar relative behavior to the As = (4, 0) parallel 
transition  shown in Fig. 12. This is also consistent with Table 
1L. The coding gains are, of course, larger  for the scHeme  in 
Fig. 13. Longer error events must, however, also be consid- 
ered before any conclusions can be made as  to how  well this 
code performs with interference. 

VI. SUMMARY AND CONCLUSIONS 
Bandwidth efficient, combined quadrature amplitude modu- 

lation (QAM) and simple convolutional codes (Ungerboeck- 
type) have  been considered when, in  multidimensional trans- 
mission, cross-coupling interference is present. This type of 
coding can  be  applied either on one of two rails of each  QAM 
signal, or jointly on the two rails. Using these methods, coding 
gains can be obtained without  any  bandwidth expansion. In the 
paper  we have analyzed average error event probabilities for 
;ome  bandwidth efficient combined coding and  modulation 
nethods for a class of cross-coupled interference channels, 
,oth  with and without interference compensation. Our conclu- 
;ions are as follows. 

1)  Through extensive numerical computations, our results 
ndicate  that  with cross-coupling interference, the coding gains 
rom the interference free channels are preserved or even 
xtended. This is true both  with  and without interference 
ompensation. 

2)  The coding gains are  larger  for the case of combined 
Jding on the two rails. Also, we find that for independently 
-09s-coupled channels, coding on two rails that  belong to two 
.fferent QAM signals can provide diversity gain  in the form 
7 total  system throughput increase via  prolonged availability 
' the two QAM signals. 
3) The analysis tools used are the method of moments to 

CODED 16 QAM 
PARALLEL TRANSITION ERROR EVENT 
PROBABILITY 
ERROR EVENT 4.4 d2 = 3 2  

dB 

Fig. 13. Average  and  worst case event  probabilities for the  minimum 
distance  parallel  transition error  event of the IJ = 8, rate 3/4 coded 16-QAM 
scheme. Interference compensation is used. 

obtain quite exact average error event probabilities and simple 
worst case formulas for the error event probabilities. Thus, we 
can  base our conclusions on precise lower bounds and on 
asymptotic coding gain  in Eb/No, which is based on worst case 
interference for dominating error events. 

4) Our formulas are general and it is quite straightforward to 
extend the numerical results to larger constellations. For 
example, the relative performance of a rate 516 coded 64- 
QAM or 32-AMPM is very similar to rate 3/4 coded  16-QAM 
or 8-AMPM  in terms of relative coding gains and interference 
suppression. The same holds for one-rail coding. 

In summary, our paper demonstrates that trellis codes can 
yield significant error performance gains for multidimensional 
QAM systems in the presence of cross-coupling between 
signal dimensions. In later work, error event analysis has  been 
extended to bit error probability evaluation for a larger family 
of codes, and the results further confirm the good  behavior  of 
the trellis codes considered herein. Future work should 
consider models for dispersive fading and codes that are 
compatible with carrier and timing recovery techniques for 
receiver implementation. 

APPENDIX 
This Appendix presents a description of the  moments 

required to evaluate the error probabilities in  the paper. 

A .  Moments for (14) 

commted from 
The moments for Y' = Y/C with Y given in  (14)  can  be 

E {  Y2J)=[fJE{[lj2k cos d l - &  sin 4,]2J} (A-1) 

where, as the interference probability density function has 
even symmetry, all  the  odd  moments are  zero. Now,  because 

1 2r 
- j (a sin x + b  cos dx= 
2?r 0 (2n)! ! 

(2n - l)! ! 
* (d+bZ)" 

where 

(2n)!!  = 2 . 4 * * - (2n) = 2" - n! 64-3) 
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(2n-1)!!=1 3 . - *  (20 - 1)  = (‘4-4) 
(2n - l)! 

2“-’(n - l)! 

and n ! represents n factorial,  there follows 

E {  YiJ> = 
(25-  l)!! 

( 2 J ) ! !  Ew; ,+b2 , , )Jb  (A-5) 

Using the  independence of 8 2 k  and B 2 k  and  the  binomial rule, 
we can  expand  (A15) as 

(A-6) 
In (A-6) the averages can’ simply be carried  out over the 
multilevel, uniformly  distributed symbols S Z k  and &. 

B. Moments for (23) 

be  found  from 
The  moments of 2‘ = Z / C  with Z given in (23) can easily 

{(cos 4-Plk sin 4YJ}. (A-7) 

Use of the  integral  in (A-1)  gives 

‘ E(Z”J) = (41 f # J  
(2J-  l)!! 

(2J ) !  ! E{(!+P:k)J}  (A-8) 

and this is simply solved  as described for the  similar case in 
Section A. 

C. Moments for (39) and (40) 
The  moments requiredare those of X in (39), which  depend 

on the  independent  random  variables 4, 61 k ,  and 81 k , k = 1, 
2, e .   e .  Now  we can express the  sum  in (39)  as a sum of 
weighted  independent  random variables, that is, A = C k  t ( k ‘ &  

where U k ’ S  are  the weights and t?k’S are  the  random  variables. 
For 6, = .52 = .5 

(A-9) 
Averaging  first  with  respect to + and-using  Sections A and B, 
there follows 

(A-10) 

Again  using  the  binomial  theorem  in (A-lo), the  moments  can 
be  found. To compute  the  moments of A in (A-lo), we  used 
the  independence of the Ok’s and  Prabhu’s  algorithm, de- 
scribed  in [17]. 
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