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Bit -Error Probability of Trellis-Coded Quadrature 
Amplitude Modulation Over Cross-Coupled 

Multidimensional Channels 

ABstract-Convolutionally encoded M-ary quadrature  amplitude  mod- 
ulation (M-QAM) systems  operated  over  multidimensional  channels, for 
example  dual-polarized radio systems,  are  considered in this  paper. We 
have  derived  upper  bounds on the  average bit-error probability for 4- 
QAM (QPSK) with conventional  convolutional  coding  by means of a 
truncated union bound  technique  and  averaging  over  the  cross-polariza- 
tion  interference by means of the  method of moments.  By modifying this 
technique, we have found approximate  upper  bounds on the  average bit- 
error probability for bandwidth efficient trellis-coded QAM systems. Thi? 
is an  extension of our  previous  work 111 that was  based on one 
dominating  error  event probability as a performance  measure. Our 
evaluations seem to  indicate  that bandwidth efficient trellis-coded M- 
QAM schemes offer much  larger  coding  gains in an  interference 
environment,  e.g., a cross-coupled  interference  channel,  than in a 
Gaussian  noise  channel. Ih general,  our  findings point out  that optimum 
codes for a Gaussian  channel  are  not optimum when  applied in an 
interference  environment. We note  that a rate 1/2 convolutional  code for 
example, with a code  memory  greater  than two, i f  applied  to  two of the 
bits in each  signal point  representation,  can be utilized with a simple 
decoder  to  greatly  improve  the  performance of a QAM signal in 
interference. Also, we have  introduced a new concept  referred  to as dual- 
channelpolarization  hopping in this  paper  which  can  improve  the  system 
performance  significantly for systems with nonsymmetrical  interference. 

I. INTRODUCTION 

T HIS paper is a  continuation of the  work  presented in [I]  
and  completes  the . earlier  work  on  multidimensional 

signaling  over  cross-coupled  channels  using  convolutional 
coding  combined  with M-ary  quadrature  amplitude  modula- 
tion (M-QAM).  These  techniques  have  received  great  atten- 
tion  recently  because  of  their  potential  in  improving  the 
capacity  and  performance  'of  digital  communication  systems 
[2]. Trellis-coded  modulation  schemes  achieve  coding  gain 
without  bandwidth  expansion [3]. Alternatively,  bandwidth 
can  be  reduced  for  the  same  error  probability  performance. 
These  properties  are  achieved by using  higher  order  alphabets 
in modulation  and  coordinating  the  coding  and  modulation. 
Conventional  bandwidth-expanding  coded  systems  with  inde- 
pendent  coding  and  modulation 141, [5]  will also  be  considered 
in this paper. In [I J ,  all  conclusions  were  drawn  using  only 
dominating  error  event  probability  calculations.  In  this  work 
the  previous  conclusions are  further  supported by bit error 
probability  evaluations  based  on all the  contributing  error 
events. 

As  shown in Fig. 1, four  synchronous  bit  streams  represent- 
ing  the  in-phase  and  quadrature  components  of  two  M-QAM 
signals  are  convolutionally  encoded.  Encoding  is  applied  to 
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certain  bits.  The  coded  and  uncoded bits are then  mapped  on  to 
symbols  of  two QAM signals  and  then  modulated.  The 
modulated  signals are  polarized  and  transmitted  over  a  flat- 
fading  channel ' with circularly  symmetric  cross-coupling 
components.  Due  to  fading  and  other  impairments,  the 
transmitted  signals  are  cross-coupled  and  received in Gaussian 
noise. The  received  QAM  symbols  are  demodulated  and 
decoded  via .a Viterbi  decoder.  The  receiver i s  optimized  for 
the  interference  free  case.  A  simple  cross-polarization  inter- 
ference  compensator [6] is used  optionally  to  ease  the 
detection  operation. An optional interleaveddeinterleaver is 
also  assumed  to  be  used. 

In  our  earlier  work  we  found  minimum  distance  and next to 
the  minimum  distance  average  error  event  probabilities  for 
various  cases  where  the  convolutional  coding  was  either 
applied  to  one  or  two  bit  streams.  Coded bit streams  were 
assumed  to  belong  to  one of the  QAM  signals  or  both. 
Performance  was  evaluated with  and  without  a simple  cross- 
coupling  interference  compensator  and  the  accuracy  of  the 
results  were  supported by means of some  asymptotic  tools. 
The main  objective  of  this  paper  is  to  evaluate  average  bit 
error  probability  for  the  signals  of [ 11 and  to  present  results  for 
some new codes. This is  done by employing  a  truncated union 
bound  to  calculate an  approximate  upper  bound  on  the  average 
bit error  probability.  Again  the  method of  moments [I] ,  [7] is 
the  basis  for our  average  error  probability  computations. 
Trellis  codes  are  found  to  exhibit  excellent  performance  for 
significantly  high  cross-coupling  parameter  values.  As in [l] 
we  note  that  some  trellis-coded  QAM  systems  yield  a  larger 
coding  gain in interference  and  Gaussian  noise  than in the 
latter  alone. 

Almost all the  published  works on trellis-coded  modulation 
schemes  assume an ideal  Gaussian  channel.  Some  related 
work  on  nonlinear  satellite  channels is presented in [SI. 
Furthermore;  the  asymptotic  coding  gains  are based  on 
minimum  Euclidean  distance.  Upper  bounds  on  the  error 
probability  for  certain  classes  of  trellis-coded  modulations  are 
derived in [9]  for  the  Gaussian  channel.  Bit  error  probability 
for  constant  amplitude  digital  modulation  schemes  consisting 
of  combined  convolutional  codes  and  continuous  phase  modu- 
lation are presented in [IO] for  the  Gaussian  channel.  Event 
error  probability  for  an  interference  channel  has been consid- 
ered in [I] and  also  for  some  schemes in [ll]. The bit error 
probability  for  conventional  bandwidth  expanding  coding  has 
been  evaluated in 1121 for  cochannel  interference. 

Following  the  introduction,  in  Section I1 we  describe  the 
system  model  and  theory  briefly.  In  Section 111, coded  binary 
phase  shift  keying (BPSK) and  quadrature  phase  shift  keying 
(QPSK) are examined in a dual-polarized  channel  with  and 
without an  interference  compensator.  Trellis-coded  M-QAM 
(M > 4)  signals  are  studied  and  compared  for  a  multidimen- 
sional  channel in Section  IV.  Dual-channel  polarization 
hopping,  a  new  technique  that  results in diversity  gains  when 
applied  to  coded  cross-coupled  channels  is  presented in 
Section  V. Our extensive  numerical  results  for QPSK, 16- 
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QAM,  8-AMPM, 64-QAM, 32-AMPM,  and  QPSK  with 
polarization  hopping are included in Section  VI.  Finally,  a 
summary  and  conclusions are presented in Section  VII. 

11. CHANNEL MODEL AND THEORY FOR ERROR  EVENT 
PROBABILITIES 

The  signal  transmission  model  is  identical  to  that of [ l ]  and 
we  only  review  it  here  very  briefly. The transmitted  signals, 
& ( t ) ,  consist of two orthogonal M-QAM signals  occupying 
the  same  bandwidth  and  using  the  same  center  frequency  by 
means  of  dual-polarization. The  baseband’  components of 
Si(t), i = 1 ,  2 ,  are  denoted by S,, SiI since they  represent  real 
and  imaginary  parts  of  the  complex  envelope  of  these  signals, 
namely, 

gj(t)= G,h”(t-kT) i =  1, 2 
m 

(1) 
k=O 

where dik represents  the  complex  data  symbols  with  real  and 
imaginary  parts 6ik and pik  taking  values  from  the  set { k C, 
k 3C, . . , + (L - 1 ) C )  with M = L2,  the  number of  signal 
points in the  QAM  signal  space.  Also, h ( t )  is the  complex, 
low-pass  equivalent  impulse  response of the  system.  Through- 
out  the  rest  of  this  paper  we  assume C = 1. As in [ 11,  we  use 
the  generalized  matrix  notations  such  that  the  sampled 
received  signal  is R = DH + Nwhere R = [ r l ~ , ’ r I 1 ,  r 2 ~ ,  r z l ]  
and D = [ 6 I k ,  P l k ,  6 2 k ,  @ 2 k ]  and  the  additive  noise  vector N = 
[n lR ,  rill, n 2 R ,  n 2 1 ] .  The indexes R and I stand  for  real  and 
imaginary  parts  of  a  complex  quantity. For simplicity,  the 
sampling  index  was  dropped. The channel  matrix H a s  in [ 13 is 
taken  to  be  circularly  symmetric,  as  follows 

H =  [ 1 

1 0 5 2  COS $2 5 2  sin 4 2  

- $2 sin 4 2  $2 COS 4 2  

5 1  COS 41 ( I  sin 41 1 
- 4 1  sin 41 t1 cos 41 0 i 

Discussions  on  the  validity of  this  model  can be found in 161. 
In (2 ) ,  t2  is  the  coupling  coefficient  from S l ( t )  to S2( t )  and @2 

is  a  random  variable,  uniformly  distritiuted in [0, 2 ~ 1 .  Also, 
( t l ,  4,) represents  the  coupling  from &(t)  to S l ( t ) .  As an 
optional  compensator  the  simple  “diagonalizer” of [ 6 ]  is 
used. The  compensator  forces  all  the  cross-polarization 
coupled  components in the  overall  channel  matrix  to  zero.  A 
possible  model  for  this  compensator  is 

In  the  case of using  the  compensator,  the  signal  values  for  data 
detection  can  be  represented  by R = D H W  + NW.  The 
system  performance  was  readily  evaluated in 111. Note  that  the 
compensator  can  be  modified  to  remove all interference (see 
[SI), however,  in  this  work,  as  in [I], we  purposely  leave  the 
residual  cross-rail  interference in order to find  out  how  well 
coding  behaves. 

Briefly,  to  get  the  error  event  probability  with or without 
coding,  if R is  the  received  signal  vector  and si is  transmitted, 
si and sj ,  i # j ,  are  two  competing  signals.  Throughout  the 
paper  all  signal,  interference,  and  noise  “vectors”  consist  of 
strings of  one-dimensional or two-dimensional  time  samples 
[ l ] .  An  error  event  occurs  when ( ( R  - sill2 > ( ( R  - s , ( ( ~  
where 11 . \ I 2  is  the  squared  Euclidean  distance.  Now  assume 

R = s ; + N + l  
where N is  the  Gaussian  noise  vector, I is  the  interference 
vector.  Then,  an  error  occurs  when x, > d0/2 - I -  Add,. 
where x, = N*As/dij, d$ = and As = sj - si. The 
components  of  the  vector N are  all  Gaussian  and  independent 
with  zero-mean  and  variance 0; .  Hence x, is  zero-mean, 
Gaussian  with  variance 0; .  Thus  the  probability of an  error 
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event  conditioned  on  the  interference  vector I is 

where Q(x) = (l/&) (-: dt is  the  error function. For 
example,  for  an  interference  vector I = {Ik) = 7 = { y k j ,  k 
= 1, 2, 3 and a signal  difference  vector As = {ak}, k = 1 ,  2, 
3 (4) can  be  expressed  as 

where 

111. CODED  BPSK AND QPSK 
Before  we  proceed with the calculation  of the  upper bound 

on the average bit error  probability  for  the trellis coded  QAM 
systems,.  we will solve  the  simpler  problem  for QPSK and 
BPSK. Here  we  can use,  conventional upper  bounds  for 
convolutional codes  over a  Gaussian channel [4], [SI and 
combine  them with the conditional error  event probabilities 
from [l]  for  coding both  with and without interference 
compensation.  An  alternative  approach  is presented in [12]. 

A .  Coding Without  Compensation 
First,  we will deal with the  case  of convolutionally encoded 

QPSK and BPSK without interference  compensation.  The 
analysis is  carried  out  for  one of the  two  cross-polarized 
channels.  For  the  other  channel,  the  upper bound on  the bit 
error probability is  obtained by replacing E l  by E 2 .  A possible 
application here  is a  satellite link.  In  the  same  spirit  and using 
(29) of [I],  the  error  event probability for  QPSK is 

P(error  event 11) = Q d j j  C (1 - X )  ( ) (6) 

where Eb is the  energy  per  information  bit, No is the  one-sided 
spectral  density  of the  Gaussian  noise, r, is  the  overall  rate of 
the  coded  system  and  where 

Independent coding  is applied to  the  inphase  and  the  quadra- 
ture  phase  components  of  the  signal.  The ak’s are  the 
components of As and  the  summation  is  over  all ak’s. For  this 
case,  the  Euclidean  distance  for  the  error  event  is dt. = 4 * d c  
where dfis the  Hamming  distance [4] for  the  error  event,  i.e., 
the Hamming  distance between the  coded binary sequences 
corresponding  to si and sj. For  uncoded  QPSK, df. = 4. 
Throughout  the  paper  we will  use the  term  error  event Loth for 
components  in  Euclidean  space  and in the  Hamming  sense. 
Our definition of  an  error  event  is  the  conventional  one  for 
convolutional codes  and  trellis  codes [4], [SI, [9], and [IO]. 
Furthermore,  for  coded  QPSK,  all  nonzero ak’s are  equal  to 2. 
This fact  simplifies the  considerations  for  the  QPSK  scheme. 
Thus.  for all error  events  we  have 

where  the  summation  is  carried  out  over all d c  nonzero 
components (ak) of A s .  The  worst-case  interference  parameter 
combination of +,, 6 2 k  and &k yields  the  maximum X for a 
given  value of E l  as X = E1X;,, with X;,, = &both  for 

uncoded  and  coded (all error  events)  QPSK.  For  the BPSK 
case,  the  event  error  probability  is  given by (7) with X = 
(2( l /di . )  cos 41 C k  ak62k. The  worst-case  interference  combi- 
nation yields X = (lX& with X;,, = 1 for  all  error  events 
for BPSK. This indicates that BPSK is more  robust  against 
interference  than  QPSK, both  with and  without  coding.  See 
[I], where  extensive  comparisons  where  made based on X;ax. 

From texts on convolutional codes,  e.g., [4], [SI it is known 
that a  good upper bound on  the bit error probability for  coded 
BPSK (or QPSK) in Gaussian noise  is  given by the  union 
bound (see  (6.1 l ) ,  pp. 243-244 of [4] and  pp. 313-314 of [5]) 

where r, = b/(b + 1 )  with b information bits per trellis 
branch [4] and  where df is  the  free  Hamming  distance of  the 
code  and  the infinite sum  in (9) in turn  can  be upperbounded 
by a so called transfer  function bound [4]. This yields  a closed 
form  expression without the infinite sum.  The coefficients wk, 
the weight distribution of the  code,  are  given  .by  the  code 
transfer  function.  In  this  study  we  are  primarily interested  in 
small or intermediate  values of the  average bit error probabil- 
ity Pb, say P b  I For  this  case, only the  first  few  terms 
of the  sum in (9) contribute  to  the  bound.  Throughout this 
paper we  will evaluate  the  upper  bounds by using  a  truncated 
version  of (9). For a high Eb/No,  the  contributions  for 
increasing  values  of k are  smaller and smaller.  We found 
empirically, that 5 to 10 terms in (9) are  quite  adequate  for P b  

I The  rate 1/2 codes  considered in this  paper  are given 
in Table I. The  coefficients wk for  these  codes  are  given in 
Table 11. For  further  details,  see [4], [5]. By combining (6) 
and (9), a truncated  upper bound or the bit error probability 
conditioned on  the  interference  can  be calculated for any 
interference  parameter  combination.  The conditional  probabil- 
ity is 

The  summation in (9) is  truncated  to dT terms.  Furthermore, 
x k  = ( ( , / k ) * C ,  ( 6 2 ,  cos - &, sin 41) where  the sum- 
mation is over  all k = d f  terms  corresponding  to  nonzero 
am’s. By averaging  over  each of the dT terms  in (10) by means 
of  the moment  method,  the  truncated  upper bound on  the 
average bit error probability &, is  obtained.  From  the  above 
the  corresponding  results  for BPSK can easily be  obtained. 

B. Coding with Compensation 
We will  now combine  the  truncated union  bound technique 

from  Section 111-A with error  event probabilities for  coding 
with interference  compensation of the  type  discussed in 
Section I1 and in [l], [6]. Error  event probability  conditioned 
on  interference  for  QPSK with independent  coding  on  each of 
its two  rails in  a QPSK constellation is  [I] 

with 

and 4 = 41 + &. The  conditional  error  event probability 
when the  two  QPSK  rails  are  transmitted  over different 
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TABLE I 
RATE 112 CONVOLUTIONAL CODES FOR VITERBI DECODING WITH 2" 
STATES. THE u = 2 ENCODER IS SHOWN IN FIG. 2 AND THE u = 5 

ENCODER IN FIG. 3 

1111,1101 
11101,10011 
111101,101011 
1111001,1011011 

WEIGHTS FOR C 
T A B L E  I1 

ALCULATING  THE  BIT ERROR PROB ABILITY FOR THE 
RATE 112 CODES IN TABLE I. THE  DATA ARE TAKEN FROM [5] 

wd 

5120 2304  1024  448  192  80 32 12  4 1 5 2 

w d + 9  wd+8  wd+7 wd+6 wd+5 w d + 4  w d + 3  w d + 2  w d + l  

3 12255 5060 2069  836  333  130 49 18 7  2 6 

4  22270 8967  3680  1324 500 225 72  20  12  4 7 

5 36234  12506  5503  2342 332 , 701 62  32  36 2 8 
I 1  I I I I 1 I I I I 

6 0 76628 0 11633 0 1404 0 211 0 36 10 

constellations  (the S I R ,   S 2 ,  case in [I]) is 

P(error  event I I )  

with X given  by (12). We will  not further  consider  this  case. 
Equation (1  1) is  obtained  from  (13)  with .$* = c I .  For  uncoded 
QPSK,  the  worst-case  interference  is  obtained  from (1 1)  with 
di = 4, al = 2, pI1 = -2 ,  k = 1  and 4 = 7r/4 yielding X,,,,, 
= .$I.$zX&ax and X;,, = f i  For  the  coded  case,  the  worst- 
case  interference  is  also  easily  obtained  from (11). For  this 
case df = 4 - d t .  Thus,  for  any  error  event,  for  the  coded  case 
we  have X;,, = f i  Thus  we  can  conclude  that  the  coding 
gain in Gaussian  noise  for  very  high  signal-to-noise  ratios  is 
preserved  for  the  interference  case  as  well. We can  expect 
larger  coding  gains  at  intermediate  signal-to-noise  ratios,  as 
we  will see in the  Numerical  Results  section. The truncated 
upper  bound on the  average  bit  error  probability  for  QPSK 
with  cancellation  and  coding  can  now  be  obtained  by  combin- 
ing (1 l ) ,  (13),  and (9) and  performing  the  averaging  over  the 
interference  by  means  of  the  moment  method.  BPSK  after 
cancellation  is  a  trivial  problem  of no interest  here  since all the 
interference  is  compensated  and  only  Gaussian  noise  remains. 

IV. TRELLIS-CODED QAM 
For  trellis-coded  modulations [3] with  Viterbi  decoding 

there  are no general  upper  bounds on the  average bit error 
probability  available in the  literature,  not  even  for  the 
Gaussian  channel.  Bounds  for  some  special  cases  such  as, 
e.g., trellis-coded M-ary  phase  shift  keying  (MPSK)  are  given 
in [9] for  the  ideal  Gaussian  channel. In this  paper  we will 
derive  approximate  upper  bounds  for  a  special  class of  trellis- 
coded  QAM  schemes.  We will demonstrate  that  the  coding 
gains  indicated  by  the  dominating error  event  probability 
(averaged  over  interference)  considered in [l] also hold for  the 
average  bit  error  probability.  The  class of  trellis-coded  QAM 

b4b3 b2 '1 
1010 1000 0010 0000 
0 0 0 + dp.4 - L o  

1011 1001 0011 0001 
0 0 0 0 

I110 I100 0110 0100 
0 0 0 e--- - 

I111  1101  0111 0101 
0 0 0 .----- l2 , 

" '3 -+ 
Fig. 2 .  Example of mapper and u = 2 convolutional encoder. The overall 

rate of the coded 16-QAM system is 314. 

schemes  considered  here  consists  of  2"-ary  QAM  schemes 
with  rate 112 coding on 2 bits  yielding  an  overall  rate  of (rn - 
l)/rn.  Fig. 2  shows  a  16-QAM  signal  with  rate 314 coding  and 
Fig. 3 shows  a  64-QAM  signal  with  rate 516 coding.  For 
further  details on this  type  of  trellis-coded  modulations,  see 
[3],  [I], [13]. As in [I]  we  are interested in comparing  the 2"- 
ary  coded  rate (rn - I)/rn QAM  scheme  to,  e.g.,  an  uncoded 
2("-')-AMPM system  which is nonbandwidth  expanding. For 
definition  of  8-AMPM  and  32-AMPM  constellations,  see [2], 
[3]. The  general  problem  with  the  analysis of  trellis-coded 
QAM  is  that  the  linear  property of the  convolutional  code [4], 
[5] is  not  immediately  carried  over  to  the  trellis-coded  QAM 
scheme  [3],  [9].  One  effect of this  is  that  the  error  event 
structure  in  general  depends on the  specific  transmitted 
information  sequence.  This  fact  considerably  complicates  the 
general  problem  of  deriving  an  upper  bound on the  error 
probability.  Averaging  now  also  has  to  be  performed  over  all 
possible  transmitted  sequences,  as in [lo]. Another  complica- 
tion  is  the  averaging  over  the  interference, as in Section 111. 

In  this  paper  we  are  considering  2"-ary  QAM  systems  with 
interleaved  natural  binary  mappers on each rail and  with a rate 
112 code  applied  to  the  least  significant bit in each  dimension, 
[13], [I]. This  is  a  set  partition  mapping  [3], [13]. For  this 
mapper it is  also  easy  to  relate  the  Hamming  distance  structure 
of  a  well-known  rate 112 convolutional  code  to  dominating 
Euclidean  distances  for  the  trellis-coded  modulation  scheme. 
The  maximum  likelihood  receiver  consists of  a  Viterbi 
decoder  with 2"  states,  where u is  the  memory in the  rate 112 
convolutional  code.  There  are 2(m-2)  transitions  between  the 
states  '(so-called  parallel  transitions). The  detector  makes  the 
maximum  likelihood  decision in two  steps  [13].  One of the 
2(m-2) transitions  is  selected.  Then  a  binary  decision  based on 
path  metrics  is  made  at  each  state  (add,  compare,  and  select) 
like in any  conventional  Viterbi  detector  for  a  binary  rate 112 
code  [4], [5]. 

The  error  events  can  consist of short, 1 symbol  errors, 
where  the  uncoded  bits  are in error.  These  are  the  parallel 
transition  errors.  The  other  types  of  error  events  are  longer 
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111011  110011  011011  010011 

111001  110001  011001  010001 

111110  110110  011110  010110 

111100 110100 011100 010100 

111111 I101 11 011111  010111 

111101  110101 011101 010101 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

'4 , '  ;: 

+ b l  
Fig. 3.  Example of mapper and u = 5 convolutional encoder. The overall 

rate of the coded 6 4 Q A M  system is 5 /6 .  

error  events  consisting of several  symbols.  This  corresponds 
to  a  case  that  the  Viterbi  detector  has  chosen  the  wrong  path 
through  the  trellis.  All  the  error  events  now  correspond  to 
errors in the  coded  bits  and  sometimes  also  errors in the 
uncoded  bits.  It  is  the  purpose  of  this  paper  to  count  the 
number  of  significant  error  events  and  evaluate  the  number of 
bit errors. 

For  Gaussian  channels it is  well-known  that  using  trellis- 
coded QAM  schemes with 2 coded  bits  only,  the  error 
probability  performance  for  high  channel  signal-to-noise  ratios 
is not  improved by increasing  the  code  memory  beyond u = 2, 
[3]. The  reason  for  this  is  that  the  minimum  Euclidean  distance 
is  given  by  the  parallel  transition  distance,  which  is  not 
affected  by  the  code  memory.  However, in interference 
channels  this is no  longer  true, [ l ] .  Therefore,  we  consider 
rate  1/2  codes of longer  memory  than 2 .  

A .  Coding  Without  Canceller 
First  we  consider  trellis-coded  QAM  without  interference 

cancellation.  The  error  event  probability  for  all  error  events 
for  the  trellis-coded  modulation  schemes  considered  here 
conditioned  on  interference,  have  been  calculated in [ 11. This 
will  be  denoted P(Ec1 I )  throughout  the  paper,  where Eo is  the 

error  event,  index i refers  to  the  transmitted  signal and j refers 
to  the  received  one.  Based  on  union  bound,  the  first  event 
error  probability [4-51 conditioned  on I can  be  upper  bounded 
by 

W I W C  Pi P(J3jIO (14) 
I j 

i t j  

where  the  outer  sum  is  an  average  over  all  the transmitted 
sequences  with  probability  density p;  and  the  inner  sum  is  a 
bound  on the  first error  event  probability  conditioned  on  the 
transmitted  sequence i and  the  interference.  Note  that  the 
interference I is  independent  of  the  transmitted  information 
sequence [ 11. In  Section 111, we  did  not  have  to  average  over 
the  transmitted  sequences  since  the  same  set  of  error  events 
occur  for  all  transmitted  sequences.  For  any  transmitted  code 
sequence  the  convolutional  code  is  linear  and  all  calculations 
can  without  lack  of  generality  be  based  on  the  transmitted,  all 
zero,  coded  sequence.  Although  (14)  seems  formidable  to 
evaluate,  we  can  significantly  simplify  the  task of  calculating 
this bound  by  the  following  observations.  The  Euclidean 
distance  for  the  dominating  error  events  caused by the 
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convolutionally coded  part of the  sequence can  be  directly 
related to  the  Hamming  distance  of  the  error  events of the 
code. Any particular  error  event with  any  given Hamming 
distance can occur  for any transmitted  sequence of coded 
QAM-points.  Thus all the  code  error  events in the coded  two 
least  significant  bits occur  for all transmitted sequences of 
coded QAM-points.  They  do,  however,  occur  more frequently 
for  certain  transmitted  sequences  than  for  others. 

Before  we  rewrite (14) in  a more convenient form, let us 
give  some  examples of error  events  for the u = 2, rate 3/4 
coded  QAM  scheme in Fig. 2. Three  types of error  events can 
occur, namely one  symbol  error  events  caused by parallel 
transition errors  and  two  different  types of “longer”  error 
events  caused by the Viterbi detector  choosing  the  wrong path 
through  the  trellis. 

Some  examples: 
1) When  the  transmitted signal point 0000 is received as 

1000, there  is a parallel  transition  error  event with the 
normalized  parallel  transition  distance de = dp = 4 .  Equally 
likely is the  parallel  transition  error 0100 when 0000 is 
transmitted.  In both cases bit errors  occur in the  first 2  bits 
only,  i.e., in the  uncoded  bits.  Much  less likely is the diagonal 
parallel transition  error  1100, (d, = 4 6 ) .  

2)  The  dominating  “long”  error  event  when a  sequence of 
0000 signal points  is  transmitted  is  001 1, 0001, 001 1 which is 
of Hamming  distance 5 from  the  transmitted  coded binary 
sequence (all zero)  in  the  last  two bits  in each signal  point and 
of distance d i  = 20  measured in squared  normalized 
Euclidean distance [I]. In this particular  example  there  are  no 
bit errors in the  first  two  bits. All errors  occur in the last two 
coded  bits.  This  is  of  course  true  for  all  error  events with d2. = 
20  conditioned  on  the  transmitted  sequence of signal points 
0000. 

3) For a more  general  sequence of transmitted signal 
points,  the  same  error  event  as in example (2) can always 
occur but also  errors  in  both  the  coded  and  the uncoded bits. 
For  example, if 001 1, 001 1, 001 1 is  the  transmitted  sequence, 
the  received  sequence 0000, 0010, 0000 corresponds  to  an 
event with d$ = 20  and only errors in the  last 2  bits like 
before,  while,  e.g., the received sequences 1100, 0010, 0000; 
1000,  0010, 0000; 0100, 0010, 0000; etc.  are  examples of 
sequences of distance d$ = 20 from  the  transmitted  sequence 
where  the  Hamming  distance  from  the  transmitted  binary 
coded sequence is 5 (last  2  bits corresponding  to  the signal 
points) and  where  errors  occur  also in the uncoded first  two 
bits of  the  binary  representation of the signal points. 

Based on  the  above  examples  we  can note  that the  coded 
error  event 11, 01, 11 (last  2  bits  only for  each signal  point) 
occurs  for any transmitted  sequence of signal points.  How- 
ever,  it  occurs  more  than  once  for  some  combinations.  The 
same  holds  for all other  long  error  events.  We  can now start 
rewriting (14) and  expressing it in error  events with  a certain 
Hamming  weight  (two  last bits of the  coded  sequences),  thus 
utilizing the  knowledge  we  already  have  about  the  conven- 
tional transfer  function bound for  the  convolutional  code  and 
thus  the  Hamming  distance  error  structure of the  code.  The 
error  event  probability  conditioned  on  interference  for  the 
coded  QAM system is  given by (28) and (29)  in [I]. Thus 

u 

with L 2  = 2 ,  and 

\ 

For  the  error  events in the two-dimensionally  coded QAM 
system where  the  absolute  value of the signal difference  vector 
components lak[ and I bkl are at most  equal  to 2, the  squared 
Euclidean distance is dF = 4d; = 4d where d t  = d is  the 
Hamming  distance  between  the  binary  coded sequences  (last 2 
bits of each signal  point).  Only this  type of “long”  error  event 
will be considered  for  the  bound.  There  are  other  “long” 
error  events,  but  their  contribution  to  the  bound  is negligible. 
The reason these  events  are  discarded  is that  they have  at least 
one  large  distance  component of the  order of at  least  the 
parallel  transition distance yielding  a  total  Euclidean distance 
that is large.  Furthermore,  these  error  events  are  less 
susceptible to  the  interference [l]. 

In the following,  the  event  error probability in (15) is 
denoted P ( 2 d 4  I )  where dii = 2@and d is  the  Hamming 
distance. By counting  all  the significant contributing  error 
events  we  can now formulate  the approximate upper  bound 
on  the bit error probability  in the  coded  information  bit  (the  bit 
that is fed into  the  binary  rate 112 code,  see  Figs. 2 and 3) 

d r i d r  

d=dj  

where C,,, is a constant  depending  on m. P ( 2 a l l )  is given  by 
(15).  For  QAM  constellations  and  even m, this constant  is 

c, = (2m/2 - 1)2U - m / z ) .  (1 8) 

This  number C, is  the result of counting all the signal point 
error  events with  a  given rate 1/2 code  error  event.  For 
example,  for  the 1 1,  01,  11  code  error  event  for  16-QAM, 
there  are 

( 1 + 2 + 2 + 4  ) x (  1 + 1 + 2 + 2   ) x ( ” 2 : 2 + 4 ) = ( ; ) ’  

contributions  to  the signal point  error  events.  The  denominator 
comes  from  averaging  over all equally likely transmitted 
sequences.  Fortunately,  the  constant in  (18) can easily be 
generalized to longer  error  events  and  other signal constella- 
tions. We found  in [ l ]  that  the  particular.structure of the long 
error  event  for a given Euclidean  distance  affects  the  condi- 
tional error probability P(2@[1)  for  the  case  of  coding 
without compensation.  In  particular,  two  coded 10 or  01 
sections (referring  to  the  coded bits) are  worse  than  one 11 
section although  their  contribution  to  the  distance  is  the  same. 
Thus, it is necessary to differentiate  between  error  events with 
the  same  distance d but  different  structures.  For  the u = 2 
code,  there  is  only  one  case, namely  all error  events begin and 
end with I 1  and in between  there  are only 01 and 10 sections. 
This  follows immediately from  Fig.  6.10  and  related text  in 
[4]. All error  events  for  the  optimum dl = 5 ,  u = 2,  rate  1/2 
convolutional  code  have  two 11 sections  and  the  remaining 
d - 4 sections  contributing  to  the  distance  for  an  error  event 
of Hamming  weight d are of type 01 or  10.  The only two 11 
sections  in the  error  event  occur at the  beginning  and  end  of 
the  error  event.  For  general  rate 1/2 codes  and in particular 
those  with u > 2, sections of type 11 can  also  occur  in  the 
inner sections of an  error  event.  For  good  codes,  the  first  and 
the last  section of an  error  event  are  always  11.  Conventional 
transfer  function  bound  techniques  can  be modified so that 
error  events with  a certain  number of 11, 01, and 10 sections 
can be  counted  separately.  This  is  required  to  make  the 
analysis  precise.  However,  as  an indication of the  perform- 
ance,  we  can  upper  and  lower bound the  contributions  for a 
given d by assuming  that all the  error  events  are  of  the  worst 
(many 01 or  10 sections) or of the best  (many 11 sections) 
type,  respectively.  The  moment method can  be used to 
evaluate  the  average of P ( 2 a I l )  for any particular  error 
event  structure. 
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We will now  derive  the  contribution  to  the  overall  average 
bit error  probability  from  the  parallel  transitions.  For 16- 
QAM, the  average  number  of  dominating  parallel transition 
errors  per  transmitted  signal  point is 2. Each  error  causes  one 
bit error in 3 information  bits.  Thus  the  contribution to the bit 
error  from a parallel  transition  error  event  conditioned  on  the 
interference  is (2/3)P(d,II) where di = 16 is  the  Euclidean 
distance  for  the  dominating  error  event (4, 0) or (0, 4). 
Equations (15) and (16) yield  in the conditional error  event 
probability.  For 64-QAM there  are  an  average of 3 dominating 
parallel  transition  error  events  per  transmitted signal  point  and 
the  average  number of information bit errors  per  parallel 
transition 'error  is 4/3. Each  signal  point  carries 5 information 
bits.  The  corresponding  numbers  for 256-QAM and other 
schemes  can easily be  worked  out.  The  approximate  contribu- 
tion to  the conditional  bit error  probability is denoted 
C,P(d, 11) where C, = 2/3 for  the 16-QAM and C p  = 415 
for  the 64-QAM schemes. 

Finally,  we need to  evaluate  the  contribution  from  the  long 
error  events  to  the  overall bit error  probability. Equation (17) 
gives the bit error  probability in the  coded  information bit. If 
the other most  significant  bits were  error  free,  the  overall 
contribution  to the  total average  conditional bit error  probabil- 
ity would be l/(m - 1)  times that of  (17).  Since  the first (rn - 
2) bits clearly  are  not  error  free  all  the  time when  long error 
events  occur, this is a lower bound on  such a  Contribution. 
Evaluation of  the  exact  coefficient  for  the  contribution  from 
the  most  significant  bits seems  hard.  We  conjecture that (17) is 
an upper bound for  the  overall  average conditional  bit error 
probability  without giving a formal  proof.  We will present a 
few  observations  to  substantiate this claim.  For  the rate 3/4 16- 
QAM, case,'  the  average  number  of  information bit errors  per 
coded  section  of type 11 is 1/2 per 2 transmitted  information 
bits in the uncoded  part  of a signal  point.'The  averaging is 
being carried-out  over  all  transmitted  sequences  and  over  all 
signal  point sequence  error  events  conditioned on any one 
particular  code  error  event.  The  corresponding  number  for  the 
01 or  10  section is 1/4 bits.  For  the u = 2 code, the 1 1 ,  01, 1 1  
Hamming  error  event  dominates  among the long  error  events. 
This  event  causes  one  information bit error in the  third bit 
(coded bit) while  the average  number of bit errors  among the 
two  first  information bits is 1/2 + 1/2 + 114 = 1.25 or  per 
bit 5/8 < 1. Thus,  our  conjecture  is pessimistic for  this  case. 
For  the d = 6 error  events,  the  average  number of information 
bit errors in the  third bit of  the signal point  per  error  event is 2 
while (1/2 + 1/2 + 2.1/4)/2 clearly  is  less.  We obtain 
similar  results for  longer  error  events  and  other  codes.  We 
have  not  found  any example  where  the  conjecture  does not 
hold. It is  obvious  from  the discussion carried  out  above that 
the bit error probability varies  somewhat with the  particular bit 
in the mapper.  For 16-QAM, each signal  point carries 3 bits  of 
information and in general  each  of  these bits has a different 
average bit error  probability.  For  the  rate 5/6 64-QAM case 
(see Fig. 3 ) ,  the  average  number of information bit errors 
among  the 4 bits in the  uncoded  part  corresponding  to signal 
points where  the  code  error  event  has a 1 1 section is 1 .  In this 
case the averaging  has  been  performed  over all transmitted 
sequences.  The  corresponding  number  for  the 01 (and 10) 
section is 1/2. Thus  the  contribution  to  the  overall  average bit 
error probability is most  likely upperbounded by (17) also  for 
the 64-QAM case. 

Thus,  the  overall  conditional (with respect  to the interfer- 
ence  parameters)  average  (over  the  transmitted  sequences  and 
over  the bits  in each signal point  mapping) bit error probability 
is  approximately  upper bounded according  to 

Finally, the  overall  average  bit  error  probability  is  obtained by 
averaging  each  term  in (19) over  the  interference by means  of 
the moment method. 

Thus, by calculating C,, dp and C, for  the trellis-coded 
QAM scheme  and using the  conventional weight structure wd 
for  the rate 112 convolutional  code,  we  have  obtained  an 
approxkate upper  bound on  the  average bit error  probability. 

B. Coding with Canceller 
It i s  now straightforward  to  obtain a corresponding  approxi- 

mate  upper bound on  the  average bit error probability for  the 
case of coding and cross-coupled  interference  cancellation. 
The  formula in  (19) still  holds with different conditional event 
error probability expressions  for P(d, 11) and P ( 2 a l 1 ) .  We 
now  use the conditional error  event probability from (40) and 
(4.1) in [l]. This  is  the  expression  for  coding  on  two  rails in 
different QAM constellations.  (The  interference is indepen- 
dent of the  transmitted  sequence [l].) We use  this expression 
because it is  easier  to  average  over  the  interference  in  this 
case. With E l  = E 2  we  conjecture that there  is  no significant 
difference  compared  to  coding  on  two  rails in the  same QAM 
constellation. The  error  event probability is 

P(error  event I I) 

where 

( 
k ) 

2 x=$: cos 4-2 sin @ (ak@lk+bks2k) * (21) 

Contrary  to  the  case in Section IV-A, the  contributions  to 
the overall bit error  probability for a given  long  code  error 
event with a given  Hamming  distance  is not dependent  on  the 
particular  structure of that  code  error  event,  i.e.,  the  number 
of 1 1 ,  01, 10 sections.  The  one thing  that matters  is' the 
Hamming  distance df = d which i s  the  number of interference 
terms  (either @ l k  or 82k or both) in  the  sum  over k in (21). The 
sum  is taken over  all  sections with ak, bk # 0. Compare the 
latter  with the  expression  for  the  interference without  cancel- 
lation, (16). In  the  latter  case,  the  interference  vector 
components  corresponding  to a k ,  bk are  dependent,  while in 
(2 1) they are  independent.  Thus  the  structure of the  error  event 
matters only for  the  case of no  compensation. Note  that the 
data  sequence  is  given by 6 1 k r  @2k while B l k ,  62k  is  interfer- 
ence, which is independent of the data  symbols [ 11. 

With the  modificationsof  the  error  event  probabilities,  the 
overall  average bit error probability conditioned  on the 
interference  is  .given by (19) and with (20), (21) and the 
averaging  over  the  interference  is obtained by using the 
moment  method [l]  on  each  term in (19). We note  that the 
bound for the coded  case wi$ cancellation is tighter than  the 
corresponding bound  without cancellation.  The  reason  is  that 
the  detailed error  structure of the  code  error  event  is not 
required  for  coding  and  cancellation. 

V. DUAL-CHANNEL POLARIZATION HOPPING FOR CODED QAM 
SCHEMES 

In [l]  we  introduced a  method to obtain diversity  gains in 
trellis-coded QAM schemes  transmitted  over 2 cross-coupled 
channels with different  interference coupling values,  i.e., E l  
# E2. No compensator is used.  The principal  idea is  for  each 
signal  point to  be  sent  as S I R  over  one  channel  and S2, over  the 
other.  Long  error  events will then  have  components  from both 
the good  (low E )  and  bad (high 5) channels  while  for  the  no 
diversity case,  all  transmissions  take  place  for  the  same 5- 
value. This  method'  of  diversity only works  for  schemes with 
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two-dimensional error  events,  like  the  long  error  events in 
trellis-coded QAM.  It  does not improve  the  performance  for 
one-dimensional coding,  like  coded  8-AM on one rail or coded 
QPSK. Although  this  diversity  option is only  partially ana- 
lyzed  in [ l],  we could conclude based on worst-case  analysis 
that some diversity gains  are obtained when t2  < E ,  while the 
worst case  for = E 2  with  diversity  was worse than 
transmission without diversity  with E l  = (2 .  An alternative 
and more widely applicable method of diversity is obtained by 
sending every  other signal  point over channel  1 and  the 
remaining  signal  points over  channel 2. This could be  done in 
a 1,  2,  1,  2, 1 ,  2 . . pattern  or  scrambled with 50 percent use 
of each  channel. We will only  consider  the  oddleven  sample 
case  here. 

It follows immediately from  the definition of the diversity 
transmission scheme  that signal  points at odd times  are 
transmitted over  channel 1 and  at  even  times transmitted over 
channel 2. Then  the  error  event probability is given  by  (15) 
with 

x=- 4 
d 2 (  t. I cos 41 ( a k & k +  b k h )  

odd 
k 

- 4 1  sin $1 x ( a k P 2 k 7 b k 6 2 k )  

odd 
k 

+ $2 cos 4 2   ( a k S 2 k +  bk/&k) 
k 

even 

- $2 sin d, ( a k P 2 k -   b k & k  ) (22) 
k 

even 

We  can  see  from (22) that  for  the  extreme  case of E 2  5 E l ,  
€2  = 0, the  interference in  a long  error  event  extending  over 
both odd  and  even  times (k)  is significantly reduced  compared 
to  no diversity and  transmission  over the El channel. For the 
other  extreme  case, namely t2  = the  worst  case with  a long 
error  event with “typical  components” in  both channels 1 and 
2 will not change  compared  to  transmission  over  one  channel. 
We  conjecture  that  averaging  over  interference  for  the  two 
cases will  yield approximately  the  same  results.  Further  work 
on this  issue is required.  In this paper  we will  only analyze  one 
special case of this  time  diversity,  namely,  QPSK and E 2  = 0. 
For this case,  the  error  event probability of (6) applies with the 
summation in (7) taken only  over  odd  values of k .  We  have 
approximately  evaluated  the  average  bit  error probability for 
this case by  ,using (10) and by discarding all the  even positions 
in an  error  event of Hamming  weight d. That  is  to  say,  an 
error  event  of  Hamming  weight d is  represented by a sequence 
of d 1’s and  every 1  in an  even position is  dropped.  Since only 
the  number of 1’s in ‘the  error  event  affects  the final average 
error  event probability for  the  case of no diversity,  we  did not 
have  to  account  for  the detailed structure of the  error  event.  As 
was  pointed out in connection with  trellis-coded QAM,  for a 
given Hamming  weight d there  are  several  different  types of 
error  events of different  lengths  consisting of a mixture of 0’s 
and 1’s. Dropping  every  even  symbol  does not necessarily 
give a Hamming  weight of d/2 for an even d and (d + 1)/2 
for  an  odd d. However, this is a reasonable  first  approximation 
for  large df. To obtain a precise  result,  every  error  event of the 
code must be  generated  and (22) must be evaluated in detail. 
Approximately,  however, half of the  components in long 
“typical”  error  events  do not contribute  to  (22). Both the 
approximate  and  the  precise  evaluation of for  the 5 2  = 0 
case can be  done with the  moment method described in [I]. 
The  more  general  case  where t2  # 0 requires  further  work. 

For the other  extreme  case, diversity and E ,  = t2  we again 
conjecture  that  the one channel  evaluation is representative, 
both in terms of average  and  worst-case  results.  It will be 
shown in the  next section,  that significant  diversity  gains can 
be obtained with this scheme  for  QPSK with  rate 112 coding. 

VI. NUMERICAL RESULTS 
The  average bit error probability as a  function of &,/No and 

interference level 20  loglo ( E l )  in dB  has been  calculated for 
QPSK,  16-QAM  and  64-QAM with and without interference 
compensation.  This  has been done  for  several  different  codes 
ranging from u = 2 to u = 8.  With (10) and (13) we  have 
evaluated an  upper  bound on the  average  bit  error probability 
for  QPSK with rate  1/2  and 314 coding  for  systems without 
interference cancellation and  rate  1/2  coding  for  systems with 
cancellation. The  results  are  shown in Figs. 4-6 where  we 
have plotted the  average bit error probability versus Eb/No. 
Fig. 4 shows  that  the  coding  gain  at,  e.g., with 
interference is  much  larger  than  the  coding  gain  in  Gaussian 
noise alone.  For  the u = 6 code,  the  coding  gain  for  the 
Gaussian channel  (interference level = - 03 dB) is  about 6 dB 
while it is almost 9 dB  for  20  log ( E )  = - 10  dB  and  about  13 
dB  for  an  interference level of - 5 dB. It is  also  clear  from 
Fig. 4 that  the  relative gain by increasing  the  code  memory 
from u = 2 to u = 6 is substantially larger  for  channels with 
interference  than in Gaussian noise only. 

Fig. 4 shows  QPSK with  a cross-polarized  channel  and  rate 
1/2  coding.  This  system  has  the  same bandwidth as  QPSK 
without coding  and no cross-polarized  channel.  The  latter 
system has of course no cross-coupled  interference.  When 
these two  systems  are  compared,  we  can  conclude  that a net 
coding  gain in &/No at equal  bandwidth  and  data  rate  is 
obtained  with the  coded  system  for  interference  levels  up  to a 
certain  level,  see  Fig. 4 where  the  coded  curves now  should be 
compared  to  the ideal  uncoded QPSK  curve without interfer- 
ence.  For a  bit error probability of this  level is about - 5 
dB  for u = 6 and a little  larger than - 10  dB  for u = 2.  Fig. 5 
shows  performance  results  for  QPSK with rate  3/4  coding.  In 
this case  we  can  observe  that  both  power efficiency and 
bandwidth  efficiency can be gained with QPSK and  rate 314 
coding in a dual-polarized  channel  than with QPSK  alone in a 
single-polarization transmission  channel.  For uncoded QPSK, 
see  Fig. 4. We  show in Fig. 6 the  performance  for  coded,  rate 
112 QPSK schemes with cancellation.  The  coding  gains in 
interference  are now somewhat  smaller than those in Fig. 4 
corresponding  to no cancellation.  Still,  the  coding gain  in 
interference  is  larger than  that in only Gaussian noise and 
increased code  memory  yields  extra  large  coding  gains in 
interference. 

We will  now compare  rate  3/4  coded  16-QAM  schemes 
with  uncoded 8-AMPM.  In [ 11 we  compared  dominating  error 
event probabilities for  these  systems.  Here  we will compare 
the approximate  average  bit  error  probabilities.  Fig. 7 shows 
the  average  bit  error probability results  for  rate  3/4  coding  and 
16-QAM for  two  codes with two  coded  and  two uncoded bits 
in each  4-bit  representation of the  16-QAM signal  points. The 
two  codes used are  the u = 2 code (shown  with 16-QAM in 
Fig. 2) and  the u = 5 code (shown  with 64-QAM in Fig.  3). 
From  the  results in Fig. 7 we  can  see  that  the  performance  for 
Gaussian  noise  is not improved by extending  the  code  memory 
from u = 2 to 5 while maintaining only two  coded bits per 
signal point.  The  performance in  both cases  is given  by the 
dominating minimum  distance  event, which is  the  parallel 
transition. By increasing  the  interference  to - 20  dB ( E  = E l  
= .5 = 0. l ) ,  the  relationship  between  the  bounds  for  the u = 
2 and u = 5 cases  are  approximately  the  same  as  for  the  case 
with no interference.  The  parallel  transition still dominates.  In 
[ 11 and  above  we  showed that whemthe  interference  increases, 
the  long  coded  error  events  dominate  the  overall  error 
probability and  the  parallel  transition  error  event  contributes 
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Fig. 4. Average bit  error probability P b  for QPSK  and coded QPSK  (upper 
bound) for rate 1/2, u = 2 and u = 6 codes. No interference compensation 
is used. 

10-1 

10-2 

10-3 

10- 4 

- 10-5 

10-6 

pb 

10-7  

10-8 

10 -9  

10-10 
2 4 6 8 10 12 , I 4  16  18 20   22  

&/No dB 

3 7’7 

Fig. 5 .  Average bit  error probability P,, for coded QPSK (upper bound) for 
rate 3/4, u = 2 and u = 8 codes. No interference Compensation is used. 
Compare  to uncoded QPSK in Fig. 4. 
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Fig. 6. Average bit error probability P b  for QPSK and coded QPSK (upper 
bound) for rate 112, u = 2 and u = 6 codes.  Interference compensation is 
used. 
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Fig. 7. Average bit error probability Pb (approximate upper bound) for rate 
314 coded 16-QAM and for 8-AMPM (solid). No interference compensa- 
tion is used. 

less.  At - 15 dB  interference,  we  can  see  this  phenomenon  in 
Fig., 7. From  Section IV, we  know  that  the  bound in (19) that 
is used in Fig. 7 is tight  for  the u = 2  code  but  loose  for  all 
signal-to-noise  ratios  for u = 5. This  has  to  do with  the  fact 
that  the  exact error  structure  for  all  code  error  events  has  to  be 
known to make a precise  evaluation. We used a simplified 
upper  bound  with  the  worst  error  structure.  For - 12 dB 
interference  this  becomes  evident,  where  the  loose  upper 
bound  on  the u = 5 code  is  actually  worse  than  the  tight  upper 
bound  on  the u = 2  case.  Even with  the  simplified  loose  upper 
bound  we  can  make  our  point,  that  is,  the  average  overall bit 
error  probability  can  be  improved by  increasing  the  code 
memory in intermediate-level  interference  channels,  e.g:, 
- 15 dB.  For  comparison,  Fig. 7 also  shows  the  approximate 
average bit error probability for uncoded  8-A.MPM  (solid 
curves). 

Fig. 8 shows  the  average  bit  error  probability  for  coded 16- 
QAM with interference  compensation.  For  this  case,  the 
simple  upper  bound is tight  for  all u and  can  easily  be 
evaluated  for  all  codes.  The  improvement  for  the u = 5 case 
over  the u = 2  case in Fig. 8 is  obvious.  Again,  for  low 
interference  levels,  there  is  no  improvement  since  the  same 
parallel  transition  error  event  dominates.  Compare  the  approx- 
imate bit error  probability  for  8-AMPM  with  interference 
compensation  (solid  curves). The  coding  gains  predicted in [ 11 
based  on  dominating  error  event  probability  evaluation are 
confirmed by the bit error  bounds in this  paper. By comparing 
Figs. 7 and  8  we  note, e.g., that  the  approximate  .required 
Eb/No to  obtain  a bit error  probability of  at an 
interference  level  of - 15 dB  is  given  by  Table 111. As  can  be 
expected,  the  coding  plus  compensator  scheme  outperforms 
the others.  Coding  alone  for  16-QAM is better  than  compensa- 
tion  for  8-AMPM  for  weak  interference: For strong  interfer- 
ence,  compensation  is  required. 

Figs. 9 and 10 show  results for 64-QAM with rate 516 
coding  and  32-AMPM  without  coding  for  the  cases  without 
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Fig.  8. Average bit error probability 4 (approximate upper bound) for rate 
314 coded 16-QAM and for 8-AMPM  (solid).  Interference compensation is 
used. 

TABLE 111 
COMPARISON OF 8-AMPM AND  RATE 314 CODED 16-QAM AT 4 = 

AND - 15 dB INTERFERENCE 

1 Scheme I Required E,& I Gain I 
17.8 dB - 

I 
8-AMPM 1 13.2 dB I 4.6 dB I with compensator 

I I I I 
16-QAM 
v = 2 coding I 12.9 dB I 4.9 dB I 

I 1 
I I 

I I 16-QAM 
v = 5 coding 11.9 dB I 5.9 dB I 

I I I I 
16-QAM 
v = 2 coding 
with compensator 

8.6 dB 9.2 dB 

and with interference  compensation.  The relationship of  coded 
64-QAM to 32-AMPM is  similar  to  the relationship  of 16 
QAM to 8-AMPM. For  coded 64-QAM we  have used the 
approximate  average bit error probability bounds  developed in 
Section IV. From  Fig. 10 it  is  observed that  uncoded 32- 
AMPM with cancellation  requires  an &,/No of  about 24.8 dB 
at P b  = and  an  interference level  of - 10 dB while rate 
516 coded 64-QAM with cancellation  requires  an Eb/No of 19 
dB  for the u = 2 code  and 17.1 dB  for  the u = 5 code.  This  is 
a gain  of 5 dB with the u = 2 code  over 32-AMPM and a gain 
of 7.1 dB with the u = 5 code.  The  corresponding  gains in 
Gaussian noise  are both 3 dB. 

The dual-channel polarization  hopping  concept in Section V 
has been  approximately  analyzed  for  the  case of QPSK with 
rate 1/2 coding without interference  cancellation.  The  curves 
in Fig. 1 1 should  be  compared  to those in Fig. 4. Note that 
with t 2  = 0, without polarization  hopping,  one  coded  scheme 
is  interference  free  and  the  performance  of  the  other  corres- 
ponding to 4 ,  is  given by the  curves in Fig. 4. With dual- 
channel polarization  hopping, both coded  schemes  have  the 

. -  
IO 12 14 16 18  20  22 24 26  28 30 

Eb/N, d B  

Fig. 9. Average bit error probability (approximate upper bound) for  rate 
516 coded 64-QAM and for 32-AMPM  (solid). No interference compensa 
tion is used. 

performance  given in Fig. 1 1 .  Note the significant improve- 
ment,  especially  at  low bit error  probability.  From  Figs. 4 and 
1 1  we  can  observe  an  improvement of about 7 dB in channel 
signal-to-noise ratio  at = lo-* for  the  worse of the  two 
channels  when a u = 2 code  is  used.  This is an  upper bound on 
the improvement  for &-values  in the interval 0 < $2 < E , .  

VII. SUMMARY AND CONCLUSIONS 
Upper  bounds  on  the  average bit error probability for 

convolutionally coded QAM schemes in  cross-coupled  inter- 
ference  channels  have  been  derived.  We  have used  a  truncated 
union  bound technique  and  averaged  the  error probability over 
the  interference by means of the method  of moments.  We  have 
empirically  observed that while 5 or  fewer  terms  are  enough  to 
calculate the union  bound at  low values  of 4 in  Gaussian  noise 
only,  up  to  10  terms  are  required  for  the  interference  channels. 
That  is,  certain  long  error  events with  a larger nominal 
Euclidean  distance  contribute  almost nothing to  the  overall 
error  probability  for  the Gaussian channel  case while their 
contribution  could  be significant for the interference channel 
case. It is  necessary  to  use  the  upperbound  technique outlined 
in this paper if the  overall bit error probability at a certain 
&/No is to  be  evaluated.  The  technique in [l] based 
on  dominating  error  events  gives  the  correct  trends  for a  high 
&/No when one  system is compared  to  another. It also gives 
the  correct bit error probability for asymptotically  high 
&,/No’s. For  “reasonable” bit error probabilities  like 
and  high interference  levels,  the  upperbound method  should be 
employed.  For QPSK (4-QAM), the  coding is conventional 
and in this  case  the  bounds  derived,  are  true  upper  bounds.  For 
trellis coded 16-QAM and 64-QAM, the  bounds  are  approxi- 
mate,  since  some  error  events  are not included.  The  approxi- 
mations  used are very good.  The  bounds  are asymptotically 
tight for high channel signal-to-noise ratios. 

The  main  conclusion in this  paper  is that  trellis-coded QAM 
schemes  give  larger  coding  gains  in  cross-coupled  interference 
channels than  in Gaussian  noise  only.  Furthermore,  the  choice 
of optimum  code  for  the trellis-coded QAM scheme  depends 
on  the  expected  interference  level.  The  code which is  optimum 
for  the  Gaussian  channel  is  not in general  optimum  for  the 
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Fig. 10. Average bit error probability (approximate upper bound) p,, for 
rate 5/6 coded 64-QAM and for  32-AMPM (solid). Interference compensa- 
tion is used. 
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Fig. 11. Average bit error probability for QPSK, rate 1/2 coding and dual- 
channelpolarization hopping for & = 0. No  interference compensation is 
used. 

interference  channel. For the  particular  schemes  considered in 
this  paper  we  note  that  rate 112 convolutional  codes  with  code 
memory u > 2 applied.to  two of  the  bits in each  signal  point 
representation  can  be  used  to  significantly  improve  perform- 
ance  of  a QAM signal in interference. A nice  extra  advantage 
with  this scheme  is  that  the  decoder  is  simpler  than for codes 
where  more  than 2 bits  per  signal  point  are  coded. The  concept 
of dual-channel polarization hopping for  channels  with 
independent  cross-coupling  was  introduced  here. As an 
example QPSK with  rate 112 coding  was  considered  and  a 
significant  improvement  was  observed in the  coding  gain. For 
the LJ = 2 code (4 states),  the  improvement  at P b  = is 
about 6 dB in channel  signal-to-noise  ratio for the  worst 
channel. 
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