
Architecture and Predicted Performance of an IEEE 
802.11b-like Wireless Metropolitan Area Network 

Transceiver at 5.8 GHz

Alexander Lackpour
Mohsen Kavehrad
Scott Thompson*
*Anntron Inc.

Center for Information and Communication Technology Research



Outline

Anntron Inc.’s WMAN System Architecture
Network Topology
Components:

UNII-Link Transceiver, Multibeam Antenna Assembly, 
Intelligent Hub Access System

Predicted Performance Analysis
Benefit of Adaptive Rate-Switching

Narrowband Channel Sounding at 5.8 GHz
RSS Data Reduction Methodology
RSS Data Histogram and CDF
Minimum Fade Margin Analysis
Minimum Chi-Square (X2) Analysis
Level Crossing Rate and Average Fade Duration



WMAN Architecture
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Anntron’s WMAN Components

Wireless Metropolitan Area Network (WMAN)
UNII-Link - point-to-point wireless LAN bridge

Based on IEEE 802.11b WLAN standard
Intersil’s PRISM II chipset
Custom Medium Access Controller (MAC) optimized for 
outdoor, point-to-point LAN bridging

MAA - Multibeam Antenna Assembly
6 main lobes over 90 degrees
Angular and antenna polarization diversity

IHAS - Intelligent Hub Access System
Contention-free medium access through switched Ethernet 
LAN microsegmentation
Pause packets provide full-duplex flow control

CICTR



UNII-Link WMAN Transceiver

MODEM: Intersil’s PRISM II
Baseband Processor (HFA3863)

DSSS Modulation: 1, 2, 5.5, and 11 Mbps rates
Rake Receiver and Decision Feedback Equalizer

I/Q Mod/Demodulator (HFA3783)
Baseband to IF conversion with 70 dB of AGC

MAC optimized for outdoor, point-to-point LANs
Rate-Switching algorithm reduces probability of packet 
errors (adaptive modulation)
Removed inherent latency of IEEE 802.11b’s Distributed 
Coordination Functions (DCF)
Prevent buffer overflow through MAC layer flow control
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BER vs SNR (dB)
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CICTR BER vs. SNR Performance Curves
Predicted Performance of UNII-Link



BER vs. Rx Power (dBm) Performance Curves
Benefit of Adaptive Rate-Switching

BER vs Received Power (dBm)
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BER vs. Rx power curves – apply adaptive rate-switching

Define minimum performance, select modulation level that can provide BER

Required Rx power to maintain BER of 10–6 drops 15 dB going from 11 to 1 Mbps



IHAS Architecture
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Multi-beam Antenna Assembly
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Provides angular and antenna polarization diversity

Segments coverage area into point-to-point sub-sectors 



Narrowband Channel Sounding at 5.8 GHz

PC running LabView

LNA

HFA3863
Baseband
Processor

DSSS
Transceiver

CW Source
at 5.8125 GHz

RF LO

HFA3868
I/Q Demod/Mod

Chip

AGC Control Voltage

Rx I

Rx Q

MC68HC12
uProcessor

40 MHz

MAC
FPGA

Tx Pe

Data

PHY

FIFO
Buffer

8

4

SAW IF BPF

BW = 17MHz

Narrowband channel sounding for Near-Line-of-Sight (NLOS) Link: 
Measure Received Signal Strength (RSS) of a transmitted CW signal
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RSS Data Reduction Methodology (1/2)
CICTR

Capture Fading Intervals:
RSS sampling rate = 
2000 S/sec
Segment long-term 
measurement into 2-second 
intervals
Calculate running-average of 
previous 2000 interval 
averages
Record interval RSS samples 
if 15 samples are 5 dB below 
running-average of interval 
averages



RSS Data Reduction Methodology (2/2)

Data analysis procedure:
Normalize RSS samples to 
fading interval average 
Calculate histogram, CDF, level 
crossing rate, and average 
fade duration

Find lowest received power:
Minimum of temporal 
variations relative to interval 
mean: -8 dBm 
Temporal minimum occurred 
during 2nd lowest RSS interval 
mean: -64 dBm

Lowest received power: 
–72 dBm



Calculating Minimum Fade Margin

Consider the lowest received signal power: -72 dBm
Take measurement during worst-case channel conditions
Use maximum accepted BER to establish the fade margin 

BER vs Received Power (dBm)
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Experimental RSS Data Histogram and CDF

Histogram of RSS
Outlier intervals due to mobile 
scattering (moving foliage in path)

CDF of RSS
Probability of a 6 dB fade

Outlier interval: 10%
Mean: 0.7%
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CICTR
Minimum Chi-Square (X2) Analysis -

Fitting Rayleigh and Rician PDFs to Experimental PMF (1/2)

Minimum Chi-Squared (X2) Analysis

Rayleigh Channel Fading Model – expressed in dB

Rician Channel Fading Model – expressed in dB

Vary LOS component of K-Factor:

∑ −
=

i i

ii

Xp
XpXpNX

)(
))()(ˆ( 2

2















−=
M
y

M
y

M
yp 2exp

2
12exp1)( 22 σσ 10ln

20
=M















⋅























+−=

M
yrI

M
yr

M
y

M
yp s

s exp2exp
2

12exp1)( 20
2

22 σσσ

102102
K

sr σ=



Minimum Chi-Square (X2) Analysis -
Fitting Rayleigh and Rician PDFs to Experimental PMF (2/2)

 
PDF Type σ2 K-Factor (dB) X 2 Goodness-of-

fit test result 
Rayleigh 0.51 - 7.1% 
Rician 0.027 12.6 99.99% 
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LCR of RSS

• LCR is mostly symmetrical 
around 0 dBm

(Fading Interval mean)

LCR at –6 dBmn

90th Percentile: 70 

Mean: < 5 

Level Crossing Rate (LCR)
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second
crossings

second
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AFC of RSS

AFC at –6 dBmn
90th percentile: 1 ms

Mean: < 100 µsecs
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Average Fade Duration (AFD)



Conclusion

WMAN architecture benefits from an optimized bridge
Stripped down MAC – remove IEEE 802.11b’s inherent latency
Data Link Layer flow control through Pause packets
Adaptive rate-switching algorithm mitigates poor channel 
conditions due to RSS fading
Eliminate co-channel interference through frequency, angular, 
and antenna polarization diversity

Narrowband channel sounding of NLOS link at 5.8 GHz
RSS measurement test hardware & software is reusable
Rician Channel model fit the experimental RSS data (99.99%) 
with K-Factor = 12.6 dB and variance = 0.027
A posteriori required fade margin: < 1 dB
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